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Abstract

Recognizing multiple objects in an image is challeng-
ing due to occlusions, and becomes even more so when
the objects are small. While promising, existing multi-label
image recognition models do not explicitly learn context-
based representations, and hence struggle to correctly rec-
ognize small and occluded objects. Intuitively, recogniz-
ing occluded objects requires knowledge of partial input,
and hence context. Motivated by this intuition, we pro-
pose Masked Supervised Learning (MSL), a single-stage,
model-agnostic learning paradigm for multi-label image
recognition. The key idea is to learn context-based repre-
sentations using a masked branch and to model label co-
occurrence using label consistency. Experimental results
demonstrate the simplicity, applicability and more impor-
tantly the competitive performance of MSL against previ-
ous state-of-the-art methods on standard multi-label image
recognition benchmarks. In addition, we show that MSL is
robust to random masking and demonstrate its effectiveness
in recognizing non-masked objects. Code and pretrained
models are available on GitHub.

1. Introduction
Multi-label image recognition (MLIR) is a fundamental

and challenging task in a variety of computer vision appli-
cations such as automatic tagging of images on social media
platforms and object detection in autonomous vehicles [3].
The aim is to recognize multiple objects or attributes in an
image. A major challenge in MLIR is how to effectively
tackle the issue of large variations in the size and spatial
locations of objects. This issue becomes more pronounced
when the objects are occluded and small.

Recent MLIR approaches, including graph convolutional
networks and their variants [7,9,27], focus primarily on cap-
turing semantics and label co-occurrence among objects.
While powerful, most of these methods require the combi-
nation of multiple networks, resulting in high computation
cost. Also, methods that deal with both semantics of objects

and label relations often consist of multiple stages of train-
ing [21,22], rely on large language models [17], and operate
on high input resolution [6, 13, 16, 27]. Moreover, they re-
quire additional data for pretraining [4], even with models
already pretrained on large datasets such as ImageNet-1k
and ImageNet-21k, and also rely on complex data augmen-
tation strategies [1, 31]. In addition, these methods do not
explicitly address the occlusion problem and fail to accu-
rately recognize small objects, leading to suboptimal per-
formance on images containing small and occluded objects.
In practical real-world applications of MLIR such as ob-
ject detection in self-driving cars, images are usually com-
prised of multiple objects of different sizes (e.g., small)
and shapes that co-exist and are densely cluttered (e.g., oc-
cluded), and hence it is of vital importance to develop MLIR
approaches that can effectively recognize small objects even
under heavy occlusions.

Intuitively, we can consider occluded objects as partial
inputs, and hence accurate recognition requires knowledge
of partial inputs, and hence context. Motivated by this in-
tuition, we propose Masked Supervised Learning (MSL), a
single-stage, model-agnostic learning paradigm for MLIR
tasks. Given a base recognition network, MSL uses a
masked branch to predict the labels for a heavily masked
version of the input image, which is a good cue for learning
context-based representations. We also propose to use label
consistency to model label co-occurrence by maximizing
the similarity between the predictions from the recognition
and masked branches. The main contributions of this work
can be summarized as follows:

• We propose a simple yet effective single-stage, model-
agnostic learning paradigm that aims to learn context-
based representations and to better model label co-
occurrence from partial inputs via masking.

• We demonstrate through experimental results and ab-
lations that MSL yields competitive performance in
comparison with single- and multi-stage approaches,
especially for small and occluded objects.

• We show that MSL is not only robust to partial in-
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puts, but also predicts objects that are almost entirely

masked, while yielding improved recognition of non-

masked objects.

2. Related Work

Hybrid Methods. These methods leverage a combination

of convolutional, graph, transformer or recurrent neural net-

works [5, 8, 9, 16, 31]. Graph based networks, for instance,

leverage semantic relations between object classes [7, 9],

but tend to incur heavy computation costs. ADD-GCN [27]

dynamically generates graphs for an image by first gener-

ating a category-aware representation, followed by mod-

eling the relationship between the representations. ADD-

GCN [27] operates on high resolution in the same vein as

SSGRL [6], C-Tran [16] and MCAR [13]. KGGR [4] op-

erates on knowledge graphs and requires additional data for

pretraining. Our method does not require the combination

multiple networks, high input resolution, or additional data.

Model-Agnostic Methods. This class of approaches are

not architecture dependent, and include ASL [1] and

CSRA [31], which can be applied to any architecture, but

require an exhaustive hyperparameter tuning. Moreover,

they achieve competitive results only when using complex

data augmentation techniques such as CutMix, GPU Aug-

mentations, or RandAugment [1, 31]. By comparison, our

proposed model achieves state-of-the-art performance with-

out relying on complex data augmentation strategies.

Multistage and Bimodal Frameworks. Query2Label

(Q2L) [21] is a two-stage framework that focuses on class-

specific attention. KSS-Net [22] is a knowledge distillation

based method comprised of a two-stage training scheme

with teacher and student models. BMML [17] is a bimodal

learning approach that not only uses a convolutional neural

network and a recurrent neural network, but also relies on

large language models [10] and additional data. Our work

differs from these frameworks in that it does not require

multiple stages of training and also does not rely on large

language models.

Transformer-Based Methods. TDRG [30] consists of

convolutional neural network, a transformer, as well as a

graph neural network that is used to capture long-term con-

textual information and to build position-wise relationships

at different scales. C-Tran [16] is a transformer based

method that relies on an additional image feature extrac-

tor and high input resolution. It exploits the dependencies

among both visual features and labels using a single trans-

former encoder. By comparison, our work is significantly

different from C-Tran. First, during training we mask im-

ages, whereas C-Tran masks labels. Second, the input to the

transformer encoder in C-Tran consists of an image and a

masked label (i.e., token), whereas our model requires only

an image. Also, our method is model-agnostic and can be

applied to any kind of network for MLIR tasks.

Overall, our work differs from previous MLIR ap-

proaches in that we propose a simple yet effective single-

stage learning paradigm that is model-agnostic. Most no-

tably, our model does not require multiple stages of train-

ing, the combination of multiple networks, large language

models, high input resolution, complex data augmentation

strategies, or additional data for pretraining.

3. Masked Supervised Learning

In this section, we begin by formulating the task at hand

and subsequently introduce the fundamental components

that make up the proposed MSL paradigm. The overall

framework of MSL is depicted in Figure 1.

Problem Statement. Let D = {(Ii,yi)}
N
i=1

be a train-

ing set of N labeled images Ii ∈ X and their ground-truth

multi-label vectors yi = (yi,1, . . . , yi,K)⊺ ∈ Y = {0, 1}K ,

with yi,k = 1 indicating the presence of the k-th label (i.e.,

object or attribute) in the image, and yi,k = 0 indicating its

absence. In other words, each image Ii is associated with

multiple labels chosen from a set of K possible classes (i.e.,

object categories). The task of multi-label image recogni-

tion is to learn a multi-label recognition model fθ : X → Y ,

where θ is a set of learnable parameters. Given a test image

I, the trained model predicts the corresponding multi-label

vector yp = σ(fθ(I)), where σ(·) is the sigmoid activation

function applied element-wise.

3.1. Masked Inputs

For masked image generation, we leverage the Irregular

Mask dataset [19], which is commonly used in image in-

painting [19,23] and is comprised of roughly 20, 000 masks

with random streaks and holes of arbitrary shapes. From

this dataset, we generate low and high mask subsets, each

of which is comprised of 1000 samples. The process for

creating these two subsets is as follows: For a given mask

sampled from the Irregular Mask dataset, we first compute

the percentage p of zero pixels in the mask. If p is greater

than 50%, then the mask is included in the high mask subset.

Otherwise, the mask is placed in the low mask subset. In

our experiments, we find that high masks generally improve

performance. Intuitively, image masking can be viewed as

“simulating” images with partial inputs. During training,

we randomly sample a mask from the high mask subset and

perform binary thresholding, where the pixel values are ei-

ther 0 or 1, and we denote this mask by Mholes. Then, we

follow the masking procedure in [19,32] to create a masked

image Imasked = I⊙Mholes, where I is the input image, and

⊙ denotes element-wise multiplication. The masked image

has a similar layout as the input image, but with roughly

50% of pixels randomly removed.
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Figure 1. Overview of Masked Supervised Learning (MSL). A single-stage model-agnostic training scheme with a Masked Branch

(MaBR) and Label Consistency (LaCo) for MLIR tasks where fθ is a base network. The recognition and masked branches are identical

and share weights. After training, fθ is used to obtain the multi-label prediction.

3.2. Masked Branch

The goal of Masked Branch (MaBr) is to explicitly learn

context-based representations, as this branch is tasked to

predict labels of heavily masked inputs (i.e., partial inputs),

translating into better multi-label predictions. The masked

branch has the ability to learn short-range context even

when objects in the image are densely cluttered. Simi-

larly, it can also learn long-range context when objects

are more spaced apart.

Given an input image I and its masked version Imasked,

we train a base recognition network fθ to predict both the

output yp of the image recognition branch and the output

ymp of the masked branch. Here, fθ is a Siamese network

like architecture [2], where the branches are identical and

share weights.

We train fθ by minimizing the following combined loss

function of the recognition branch and masked branch

Linter = Lrcg(yp,ygt) + LMaBr(ymp,ygt), (1)

where Lrcg and LMaB are binary cross-entropy losses be-

tween the ground truth and the outputs of the recognition

and masked branch, respectively. Application-specific loss

functions can also be used in lieu of cross-entropy.

3.3. Label Consistency

As objects generally co-exist in an image (e.g., chair

is more likely to co-occur with table than a sportsball), it

is of vital importance to model this label co-occurrence to

help improve the recognition performance. To perceive this

label-level feature, we propose to use Label Consistency

(LaCo) that maximizes the similarity between the pre-

dictions from the recognition and masked branch. Since

we use a Siamese style architecture, where the network is

the same with shared weights, maximizing the predictions

helps the network learn to predict heavily occluded objects

(e.g., partial inputs) from the presence of other target ob-

jects, thereby effectively utilizing masked branch. More

specifically, we maximize the similarity between the predic-

tions from the recognition branch yp and the masked branch

ymp by minimizing the L2-loss LLaCo = ‖yp − ymp‖
2.

3.4. Overall Loss Function

Using the recognition branch, masked branch and label

consistency, we define the overall loss function for the pro-

posed MSL model as follows

Ltotal = α1Lrcg(yp,ygt) + α2LMaBr(ymp,ygt)

+ α3LLaCo(yp,ymp),
(2)

where the scalars α1, α2 and α3 are nonnegative trade-

off hyperparameters, which control the contribution of each

loss term.

During training, Ltotal is minimized between predictions

and ground-truth labels for several epochs using stochastic

gradient descent to learn the parameters of fθ using a la-

beled training set. For inference, the trained network fθ is

used in multi-label image recognition to obtain multi-label

predictions given a test image I. Hence, MSL is simple in

structure (i.e., model-agnostic) and easy to implement (i.e.,
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single-stage training). When α1 = 1 and α2 = α3 = 0,

we obtain the recognition loss, which is basically the loss

function for the vanilla network.

4. Experiments

In this section, we demonstrate the performance of MSL

in comparison with state-of-the-art methods. Details on the

implementation, architecture and training, as well as addi-

tional results are included in the supplementary material.

4.1. Experimental Setup

Datasets. We conduct experiments on two MLIR bench-

marks: VOC2007 [12] and MS-COCO [18].

• VOC2007. This is a widely-used dataset for MLIR

tasks, and is comprised of 9,963 images with 20

classes, where the train-val set has 5,011 images and

the test set has 4,952 images. Following previous

work [8, 31], we use the train-val for training and

test for testing. We also set the input resolution to

448× 448, unless otherwise specified.

• MS-COCO. This is a standard benchmark for train-

ing and evaluating image recognition, segmentation,

and detection algorithms. In our experiments, we use

COCO-2014, which consists of 82,081 and 40,137

training and validation images, respectively, with 80

different classes. For fair comparison with previous

work [16, 30, 31], we use the same training and evalu-

ation procedures, and evaluation metrics.

Baselines. We compare MSL against several state-of-the-

art graph-based methods that use different learnable net-

works such as ML-GCN [9], P-GCN [7], ADD-GCN [27]

and TDRG [30]. We also compare against model-agnostic

methods such as ASL [1] and CSRA [31], which rely on

complex data augmentation. Moreover, we compare against

methods that require large language models and additional

data for pretraining such as BMML [17] and KGGR [4], as

well as methods that operate on high input resolution such

as SSGRL [6], C-Tran [16], MCAR [13], and IDA [20]. Fi-

nally, we compare against multi-stage frameworks such as

KSS-Net [22] and Query2Label [21].

Evaluation Metrics. We use the mean average precision

(mAP) as primary evaluation metric [8,31]. We set positive

threshold to 0.5 and report overall performance results of

MSL and baselines using other evaluation metrics, includ-

ing overall precision (OP), overall recall (OR), overall F1-

measure (OF1), per-category precision (CP), per-category

recall (CR), and per-category F1-measure (CF1).

4.2. Comparison with State-Of-The-Art

Comparisons on VOC2007. We compare the perfor-

mance of MSL against several state-of-the-art methods, and

the results are reported in Table 1. All scores are av-

eraged over 3 runs. We employ MSL with two CSRA-

based backbones: ResNet-cut, which is a ResNet-101 [15]

pretrained on ImageNet-1k with CutMix [29], and ViT-

L16 [11], which is a large vision Transformer pretrained on

ImageNet-1k with 224 × 224 resolution. We refer to these

MSL variants as MSL-C and MSL-V, respectively. The

classification head of these backbones differs from the typ-

ical fully connected or global average pooling layer by uti-

lizing a CSRA module [31]. This module generates class-

specific features for each category, and then combines the

intermediate results to produce the final logits. As shown

in the table, MSL-C outperforms all previous state-of-the-

art models, achieving relative improvements of 1.1%, 5.6%

and 3.9% in terms of mAP, CR and CF1, respectively, over

the strongest baseline. MSL-C performs better than graph-

based methods such as ML-GCN and ADD-GCN. MSL-C

also achieves a relative improvement of 2.8% in terms of

mAP over SSGRL, which is trained on input resolution of

640 × 640 and uses both a convolutional feature extractor

and a graph neural network. Notably, MSL-C is also ef-

ficient and more accurate than KGGR and BMML, which

use additional data (MS-COCO) consisting of 82,081 im-

ages for pretraining on top of ImageNet-1k pretraining, and

also rely on large language model BERT [10] and operate on

label-level attentions (i.e, multiple images), making them

compute intensive.

The first two rows of Figure 2 show visual examples of

predictions made by MSL-C and CSRA ResNet-cut as base-

line. In the first row, we can see that the baseline fails to rec-

ognize small objects such as motorbike, person, chair and

tvmonitor. The second row shows instances where the base-

line model fails to recognize target objects under heavy oc-

clusions, such as sports ball, person and vase. In contrast,

MSL-C is able to recognize small objects, as well as ob-

jects that are heavily occluded. The masked branch, which

is responsible for recognizing target object(s) from partial

inputs through masking, can acquire context-based repre-

sentations. This ability is likely responsible for its success

in recognizing objects under challenging conditions. La-

bel consistency, on the other hand, helps model label co-

occurrence by maximizing the similarity between the pre-

dictions made by the recognition and masked branches.

Comparisons on MS-COCO. In Table 2, we report re-

sults on MS-COCO, where all scores are averaged over 3

runs and MSL is applied on CSRA-based ResNet-cut back-

bone. As can be seen, MSL-C outperforms all baselines

operating on input resolution 448 × 448 by 1.4% in terms

of mAP. MSL-C also outperforms complicated and time-

consuming methods such as KSSNet and MCAR, as well as

methods that operate on higher input resolution 575 × 576
such as ADD-GCN, SSGRL, and C-Tran. In particular,

MSL-C outperforms MCAR by a relative improvement of
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Table 1. Performance comparison of MSL and baselines on

VOC2007 using mAP, CR and CF1 metrics. Boldface numbers

indicate the best performance, whereas the best baselines are un-

derlined. † indicates the results reproduced by the corresponding

released codes or their modified versions. “pre” means pretrained

on the MS-COCO dataset.

Method mAP CR CF1

ResNet [15] 92.9 - -

FeV+LV [25] 92.0 - -

Atten-Reinforce [5] 92.0 - -

RCP [24] 92.5 - -

SSGRL [6] 93.4 - -

SSGRL (pre) [6] 95.0 - -

ML-GCN [9] 94.0 - -

ADD-GCN [27] 93.6 - -

BMML† (pre) [17] 95.0 - -

IDA-R101 [20] 94.3 - -

ASL [1] 94.6 - -

MCAR [13] 94.8 - -

CSRA† [31] 93.7 87.5 88.3

KGGR [4] 93.6 - -

KGGR (pre) [4] 95.0 - -

SST [8] 94.5 - -

MSL-V 95.0 84.8 89.5

MSL-C 96.1 92.4 91.6

2.2% in terms of mAP. MCAR has two network streams that

are trained jointly, and at inference predictions are fused

from the two streams to generate a final prediction, whereas

MSL has two streams with same weights in a Siamese-style

network, which is much easier to optimize, and at inference

a single network is used to make predictions. Moreover,

MSL-C outperforms ADD-GCN, which uses a CNN and a

GCN, by a relative improvement of 1.4% in terms of mAP.

In the last two rows of Figure 2, we show visual exam-

ples of predictions made by MSL-C and CSRA ResNet-cut

as baseline on MS-COCO. A similar pattern can be ob-

served, where MSL can recognize small objects and also

objects under heavy occlusions compared to the baseline. It

is worth mentioning that the variation of objects and their

shapes or sizes are more complex in MS-COCO than those

in VOC2007.

Overall, MSL is able to learn context-based repre-

sentations and to better model label co-occurrence by

masked branch and label consistency, thereby translating to

better predictions in comparison with the baselines. MSL

can better recognize small objects and also objects under

heavy occlusions. MSL is also very simple and much eas-

ier to train, as it does not require multiple stages of train-

ing, the combination of multiple learnable networks,

large language models, high input resolution, complex

data augmentation strategies, or additional data.

4.3. Ablation Study

We analyze how each of the key components of the pro-

posed MSL framework affects the final performance. We

also perform hyperparameter sensitivity analysis.

Effectiveness of Masked Branch. Table 3 illustrates the

benefit of using masked branch tasked to make predictions,

given partial inputs by random masking. We adopt CSRA

with ResNet-cut backbone as our baseline, and evaluate per-

formance on VOC2007. We find that the masked branch im-

proves performance in terms of mAP and other evaluation

metrics. It helps learn useful representations, especially for

small and occluded objects due largely to the fact that the

branch is tasked to recognize masked objects (i.e., partial

inputs), thereby leveraging information from neighboring

objects.

Effectiveness of Label Consistency. As shown in Ta-

ble 3, label consistency helps improves performance in

terms of mAP and other metrics. This constraint essentially

guides the model to make accurate predictions on masked

inputs by minimizing the distance between the predictions

made by the recognition and masked branches. Basically,

we push the predictions of the masked branch predictions

and recognition branch predictions together and learn rep-

resentations for partial inputs. As can be seen, the best per-

formance is achieved when combining masked branch and

label consistency. Also, Table 4 shows that MSL is model-

agnostic, and can also improve performance of not only

classical convolutional backbones, but also modern trans-

former backbones.

Effectiveness of Binarization. Table 5 shows the benefit

of using binarization of masking during training. We find

that applying binary thresholding to the masks significantly

improves performance of the baseline in terms of all met-

rics. This is attributed to the fact binarization yields true

masking, dropping certain pixels while retaining the rest,

thereby resulting in better numerical stability. Without bina-

rization, the image is slightly offset in the pixel space when

multiplied by 0.884 instead of 1, yielding a different repre-

sentation in the feature space that degrades performance.

Amount of Masking. In Table 6, we report the effect of

the amount of masking on MSL performance. We adopt

CSRA with ResNet-cut backbones, and evaluate perfor-

mance on VOC2007 and MS-COCO, respectively. We find

that applying extensive image masking during the training

process leads to improved performance.

Hyperparameter Sensitivity Analysis. We adopt CSRA

with ResNet-cut as a base model and apply MSL to evaluate

its performance for various values of the trade-off hyperpa-

rameters α1, α2 and α3 on VOC2007. Table 7 shows the ef-
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Table 2. Performance comparison of MSL and baselines on MS-COCO in terms of mAP and other evaluation metrics. Boldface

numbers indicate the best performance, whereas the best baselines are underlined. † indicates the results reproduced by the corresponding

released codes or their modified versions.

Method Input Resolution mAP CP CR CF1 OP OR OF1

ResNet [15] 448× 448 79.4 83.4 66.6 74.0 86.8 71.1 78.2

PLA [26] 228× 228 - 80.4 68.9 74.2 81.5 73.3 77.2

ResNet-cut† [15] 448× 448 82.1 86.2 68.7 76.4 88.9 73.1 80.3

ML-GCN [9] 448× 448 83.0 85.1 72.0 78.0 85.8 75.4 80.3

MS-CMA [28] 448× 448 83.8 82.9 74.4 78.4 84.4 77.9 81.0

KSSNet [22] 448× 448 83.7 84.6 73.2 77.2 87.8 76.2 81.5

MCAR [13] 448× 448 83.8 85.0 72.1 78.0 88.0 73.9 80.3

TDRG† [30] 448× 448 84.6 86.0 73.1 79.0 86.6 76.4 81.2

CSRA† [31] 448× 448 84.3 83.5 74.3 78.6 85.1 77.2 81.0

Q2L-R101† [21] 448× 448 84.0 82.0 75.8 78.8 83.3 78.8 81.0

IDA-R101 [20] 448× 448 83.8 - - - - - -

SST† [8] 448× 448 84.2 86.1 72.1 78.5 87.2 75.4 80.8

P-GCN† [7] 448× 448 83.2 84.9 72.7 78.3 85.0 76.4 80.5

KGGR† [4] 448× 448 84.3 85.6 72.7 78.6 87.1 75.6 80.9

ADD-GCN [27] 576× 576 85.2 84.7 75.9 80.1 84.9 79.4 82.0

SSGRL [6] 576× 576 83.8 89.9 68.5 76.8 91.3 70.8 79.7

C-Tran [16] 576× 576 85.1 86.3 74.3 79.9 87.7 76.5 81.7

MCAR [13] 576× 576 84.5 84.3 73.9 78.7 86.9 76.1 81.1

MSL-C 448× 448 86.4 90.1 76.3 80.4 89.1 80.0 82.2

Figure 2. Visual comparison of MSL and CSRA [31] on VOC2007 and MS-COCO. First two rows show samples from VOC2007:

the first row shows cases where MSL can better recognize small objects and the second row shows cases of heavy occlusions. The last

two rows shows samples from MS-COCO. For both datasets, MSL is effective at recognizing small and occluded objects compared to the

CSRA baseline. Zoom-in for better details.

fect of each hyperparameter on MSL performance in terms

of mAP, CR and CF1. Interestingly, the best performance is

achieved when the trade-off hypeparameters α1 and α2 are

weighted almost equally. Moreover, using label consistency

with α3 = 0.5 gives the best results. This suggests that the

learned representations for partial inputs contribute to the
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Table 3. Effectiveness of masked branch and label consistency

on MSL performance using VOC2007. Using both masked

branch and label consistency significantly improves the baseline

performance.

Method MaBr LaCo mAP CR CF1

Baseline 93.7 87.5 88.3

MSL X 94.0 89.1 88.4

MSL X 94.3 88.1 88.9

MSL X X 96.1 92.4 91.6

Table 4. Comparison of different architectures trained using

MSL on VOC2007 and MS-COCO. MSL is model-agnostic and

improves performance of different architectures.

Architecture VOC2007, mAP (%) MS-COCO, mAP (%)

ViT 94.4 76.8

+ MSL 95.0 79.0

ResNet 93.7 84.3

+ MSL 96.1 86.4

Table 5. Ablation analysis of binarization in MSL using

VOC2007. Binarization helps achieve better numerical stability.

Binarization mAP CR CF1

Baseline 93.7 87.5 88.3

+ w/o Binarization 93.8 88.2 88.2

+ w/ Binarization 96.1 92.4 91.6

Table 6. Ablation analysis of high- and low-masked pixels dur-

ing MSL training using VOC2007 and MS-COCO. MSL with

high-masked pixels yields better performance.

Masking VOC2007, mAP (%) MS-COCO, mAP (%)

Low 95.0 85.1

High 96.1 86.4

improvement of the overall performance.

Table 7. Effect of hyperparameters on MSL performance using

VOC2007.

α1 α2 α3 mAP CR CF1

1 1 1 93.6 87.7 88.2

0.2 0.2 0.6 94.7 88.6 89.5

0.3 0.3 0.4 95.0 89.0 89.9

0.4 0.4 0.2 94.6 89.1 89.5

0.3 0.2 0.5 96.1 92.4 91.6

4.4. Robustness

We now examine the robustness of MSL against partial

inputs and showcase its ability to predict non-masked ob-

jects.

Quantitative Results. We evaluate MSL against partial

inputs by deliberately masking the input images before

making a prediction. In Figure 3(a), we show compar-

ison results of MSL against CSRA with ResNet-cut on

VOC2007. Using MSL, mAP is improved by 19.8%, while

CR and CF1 are improved by 30.7% and 24%, respectively.

A similar trend is observed when comparing MSL against

CSRA with ResNet-cut on MS-COCO, as depicted in Fig-

ure 3(b), achieving a mAP improvement of 20.6%. This

shows that MSL is robust to heavily masked inputs, and

hence occlusions.

(a) ResNet-cut on VOC2007. (b) ResNet-cut on MS-COCO.

Figure 3. Performance comparisons when provided randomly

masked images at test-time on VOC2007 and MS-COCO. MSL

is robust to heavily masked inputs, and hence occlusions.

Qualitative Results. In Figure 4, we show visual compar-

isons of the top three predictions by our approach compared

to the baseline when making predictions on masked inputs.

We can see that the baseline fails to make predictions when

the input image is masked. Even in cases where the object is

slightly masked, the baseline fails to make a prediction. By

comparison, our model is able to recognize objects that are

heavily masked thanks to the masked branch. Also, there

are cases where the object is almost completely masked,

but still our method is able to make a prediction. This is

largely attributed to label consistency, where the target label

can be inferred from the other predicted labels.

Non-Masked Objects. We also highlight an interesting

property of MSL predictions in Figure 5, which shows that

our model predicts non-masked objects better than the

baseline. We hypothesize that this is due in part to the initial

features or cues that the model needs to focus on.

Comparison with random masking strategy. While the

Masked Autoencoder (MAE) [14] is a well-established

masking strategy frequently employed in self-supervised

learning, the key novelty of our MSL framework lies in the

application of a masking strategy within the context of su-

pervised learning. This novel utilization of masking during

supervised learning sets our approach apart from existing

methods. Moreover, MAE follows a two-step process: first,
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Figure 4. Visual comparison of predictions made by MSL and baseline for masked input images on VOC2007 (first two rows) and

MS-COCO (last two rows) datasets. MSL is able recognize objects that are heavily masked and performs well in cases where the object

is almost completely masked.

Figure 5. Comparison of MSL and baseline on VOC2007 (first

row) and MS-COCO (second row). Interestingly, MSL yields

better prediction of non-masked objects.

it undergoes pre-training for 800 epochs exclusively on im-

ages, and then it proceeds to fine-tune for an additional 50

epochs using both images and labels. In contrast, MSL re-

quires only a single stage of training, lasting 60 epochs, uti-

lizing both images and labels. To compare the performance

of MSL and MAE, we present the results in Table 8, which

demonstrates the superiority of MSL over MAE in terms of

mAP on both VOC2007 and MS-COCO datasets.

Table 8. Performance comparison of MSL and MAE in mAP.

Masking VOC2007 MS-COCO

MAE [14] 95.3 85.5

MSL 96.1 86.4

Comparison with CSRA variants. In Table 9, we compare

CSRA variants and MSL variants on VOC2007 and MS-

COCO. As can be seen, MSL yields improved performance

for both transformer and convolutional backbones.

Table 9. Performance comparison of MSL and CSRA variants.

Method VOC2007, mAP (%) MS-COCO, mAP (%)

VIT-L16 92.1 75.6

VIT-L16 w/ CSRA 94.4 76.8

VIT-L16 w/ MSL 94.9 77.4

ResNet-Cut 92.4 81.0

ResNet-Cut w/ CSRA 93.7 84.3

ResNet-Cut w/ MSL 94.4 85.5

5. Conclusion

In this paper, we presented a single-stage, model-

agnostic learning paradigm using masking. The proposed

paradigm, which is motivated by the intuition that occluded

objects are partial inputs, enables models to explicitly learn

context-based representations and to model the label co-

occurrence. We showed through extensive experiments that

our method surpasses state-of-the-art models that heavily

depend on multiple stages of training, high input resolution,

the combination of multiple networks, large language mod-

els, complex data augmentation strategies, and additional

data. We also demonstrated that MSL is robust to masked

partial inputs for large and small objects, which is a strong

indicator of its ability to handle challenging cases of small

and occluded objects. Our method distinguishes itself from

previous approaches due to its simple and straightforward

training process, with the added benefit of incurring only a

minor computational overhead compared to those methods.

For future work, we aim to adapt the proposed framework

to other computer vision tasks such as object detection.
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