
A. Zero-Shot Experiments
In this section, we discuss our zero-shot experiments on

the 3RScan dataset [35]. First, we discuss the collection of
referential sentences. 3RScan is a large-scale, real-world
dataset that contains 1482 3D reconstructions. Second, we
report the zero-shot listening accuracy of our proposed model
MVT-ScanEnts compared to the original MVT model.

A.1. Referential Sentences Collection for 3RScan
We collect referential sentences for the validation scans

present in the 3RScan dataset. We follow the data collection
approach presented in [5]. The dataset collection pipeline
consists of two stages; data collection and data verification.
In Figure 6, we show the AMT interface used for data collec-
tion along with actual collected data examples. We collect
in total 840 referential sentences covering all of the 47 scans
of the official validation split.

A.2. Zero-Shot Listening Results
We do zero-shot neural listening tests using a pre-trained

MVT-ScanEnts model, which is trained on Nr3D using the
rich annotations of ScanEnts3D and our novel proposed
losses and using an original MVT model trained on Nr3D as
in [34] without ScanEnts3D. We center the input scene point
cloud around the origin point and transform the point cloud
to become axis-aligned as described in [23]. In Table 8,
MVT-ScanEnts outperforms MVT on out-of-domain 3D
scenes by 4.17%. The result shows that neural listeners
when trained on ScanEnts3D, can exhibit better 3D scene
understanding even on unseen scans.

Method Overall Acc.
MVT [34] 11.80%
MVT-ScanEnts 15.97% (+4.17%)

Table 8. Zero-Shot listening performance on our collected referen-
tial sentences on the 3RScan dataset. MVT-ScanEnts outperforms
the original MVT model on test examples of unseen scans.

B. ScanEnts3D Dataset Analysis
In this section, we provide a more detailed analysis of

our proposed ScanEnts3D dataset. In Figure 7, we show
a breakdown of the extracted pairwise spatial relationships
between the scan entities in ScanEnts3D. In total, we extract
using existing spatial relation classifiers [43] 24,028 pairwise
spatial relations for the Nr3D dataset and 15,278 pairwise
spatial relations for the ScanRefer dataset.

In Figure 8, we show the classes most used as anchor
objects for both Nr3D and ScanRefer datasets. We observe
that the most used anchor classes are walls, chairs, windows,

and doors. We also observe that only 363 fine-grained object
classes are used for the anchor objects.

In Figure 10, we show a histogram of the number of
scan entities of ScanEnts3D for the Nr3D and ScanRefer
datasets. The mean number of scan entities in Nr3D is 2.5,
with a standard deviation of 1.17. The mean number of scan
entities in ScanRefer is 3.96 with a standard deviation of
1.45.
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Figure 10. Histogram of the
number of ScanEnts3D scan
entities present in Nr3D and
ScanRefer datasets.
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Figure 11. Comparison be-
tween the performance of MVT-
ScanEnts and MVT models
when increasing the number of
scan entities and the number
of same-class distractor objects.
The performance generally de-
creases when increasing the num-
ber of the scan entities and the
same-class distractor objects.

C. ScanEnts3D Dataset Collection

This section discusses in detail the two phases of our
ScanEnts3D curation. Figure 9 shows the user interface we
implemented.

Annotation Phase. An annotator is given an utterance
and a 3D scene. While the utterance generally describes one
specific object in the 3D scene, the annotator is first asked to
mark all the nouns (entities) that describe specific objects in
the given 3D scene (e.g., chair, table, etc.) in the utterance.
Then, for each selected entity in the given utterance, the
annotator must highlight the corresponding 3D objects in
the given 3D scene. The annotator can zoom, pan or rotate
the 3D scene to find the corresponding 3D objects. Each
annotator is provided with one random utterance at a time.
We assign one annotator for each example.

Review Phase. A reviewer is given one annotated exam-
ple randomly and is asked to determine whether the example
was correctly annotated. If the example was annotated incor-
rectly, the reviewer is then requested to correct and fix the
annotation. The reviewer is shown a similar user interface to
the annotator. Each submission is reviewed by one reviewer.



“The chair closest to the large green plant.”“The door is to the right of the red wall with 
a television and television stand on it.”

Figure 6. User interface for the collection of referential sentences for the 3RScan zero-shot experiment. On the top, we show the
detailed instructions provided to the annotator to ensure the task requirements are clear and straightforward. On the bottom (b), we show
two examples of the resulting annotations. The target objects are the ones inside the green bounding boxes, while the same class distractor
objects are in the red bounding boxes.
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Figure 7. Breakdown of the extracted pairwise spatial relationships of Nr3D and ScanRefer datasets. Despite their similar nature, we
see that in terms of spatial relations types used to describe objects, there is a noticeable discrepancy among their annotations.

D. Neural Listeners
D.1. SAT-ScanEnts

This section discusses our modifications to the SAT [68]
neural listener. For the cross-attention map loss, since the



(a) (b)

Figure 8. Wordclouds depicting the most common object classes in (a) Nr3D and (b) ScanRefer datasets. The font size of each printed
class name is proportional to its underlying frequency (better seen by zooming in).

(a)

(b)

Figure 9. User interface for the ScanEnts3D dataset collection. On the top (a), we show the detailed instructions provided to the annotator
to ensure the task requirements are clear and straightforward. On the bottom (b), we show an example of a resulting annotation.

SAT model is using transformer encoder layers, it does not
contain an apparent cross-attention operation between the
object tokens and the language tokens. To address that, we
add one transformer decoder layer as shown in Figure 13,

where we apply our proposed cross-attention map loss. The
Cross-Attention Map loss encourages the network to attain
high relevance values between both the objects and the words
representing the same underlying scan entity. The target
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Figure 12. Our proposed SATCap-ScanEnts model. SATCap-ScanEnts is based on the “Show, Attend, and Tell” model [56]. We use a
pre-trained 3D object encoder for encoding the scene objects. The decoder is an LSTM [27], where we apply our proposed loss Lent during
training. If the word to be predicted by the decoder in the current time-step (like table and fridge) corresponds to a scan entity in the target
caption, the attention values to the 3D objects that belong to the scan entity should be higher than that of the objects that do not belong to
that scene entity.

matrix Yattn is a binary matrix of shape M ⇥ N , where
a cell (yi,j) has a value of 1 if the ith object and the jth
word correspond to one another. To cover the case of the 3D
objects that do not belong to any of the scan entities in the
given utterance, we add an extra word token called <NM>
as shown in Figure 13 and for every object k that does not
belong to any of the scan entities, we set the cell (y1,k to the
value of 1. The <NM> mention token is always added after
the <CLS> token. The anchor prediction loss and the same-
class distractor loss are applied to the late context-aware
feature.

D.2. 3DJCG-ScanEnts
The 3DJCG [12] model is an object-detection-based

model, where the input to the model is a point cloud of
a 3D scene and an input utterance. The task of the model is
to localize the target object via predicting an axis-aligned 3D
bounding box around the target object. We apply the anchor
prediction loss as discussed in the main paper in Section
4.1.1. We apply an MLP � on the feature vectors of the
detected object proposals to obtain a confidence score xi

2 [0, 1] of whether the object proposal is an anchor object
or not. To construct the ground truth for the anchor predic-
tion loss, we follow a similar approach as in [20, 67]. For
each object proposal, the ground-truth label is yi 2 {0, 1}.
We set the label yj = 1 for the jth proposal that has the
highest IOU with the box of one of the ground truth anchor
objects. We apply a binary cross entropy loss between the
predicted confidence vector X and the ground truth vector Y
as in Lanc = BCE(X,Y). The total loss used in the 3DJCG
model would be L = Lorg + Lanc, where Lorg represents
the original losses used.

E. Neural Speakers

E.1. SATCap-ScanEnts

In Figure 12, we show the SATCap-ScanEnts model,
which is discussed in Section 4.2.1 in the main paper. The
SATCap-ScanEnts model is based on the “Show, Attend,
and Tell” model, which is a 2D image captioning model.
To make it amenable to purely 3D inputs, we replace the
image encoder with the encoder network found in the MVT
model [34], which is a point cloud PointNet++ encoder
together with 3D object self-attention layers. For the de-
coder network, we use a unidirectional LSTM cell [27].
The speaker model is trained via teacher-forcing [60]. our
proposed entity prediction loss Lent is applied during the
decoding steps in the following manner. At each decoding
step, if the current word to be predicted corresponds to a
scan entity (table and fridge words in Figure 12), our loss
pushes the object(s) corresponding to the underlying scan
entity to be the highest scoring among all objects present in
the input scene. The entity prediction loss is not applied if
the current word to be predicted does not correspond to a
scan entity.

F. Implementation Details

For the listening experiments, we used the same hyper-
parameters specified in MVT [34] and SAT [68]. For the
3D object localization experiment, we use the same hyper-
parameters of 3DJCG [12]. We use one NVidia V100 GPU in
each of our experiments. We use the same hyper-parameters
found in [64] for the neural speakers.



Transformer 
Decoder

× 𝟏

Fe
ed

-F
or

w
ar

d

Cr
os

s-
At

te
nt

io
n

Se
lf-

At
te

nt
io

n

M
LP

M
LP

M
LP

𝓛 𝒅𝒊𝒔

𝓛 𝒓𝒆𝒇

𝓛 𝒂𝒏𝒄

𝓛 𝒂𝒕𝒕𝒏

GT

GT

𝑂1

𝑂𝑀

𝑂2
𝑂1

𝑂𝑀

𝑂2

𝐿1𝑁𝑀 𝐿𝑀𝐿1𝑁𝑀 𝐿𝑀

table

…

fridge

bed

Query
“The table near 

the fridge.”

La
ng

ua
ge

 
En

co
de

r
O

bj
ec

t 
En

co
de

r

3D Point Clouds

…
2D Image Semantics

𝑀 × 𝑃 × 6
(XYZ+RGB) 

𝑀 × 2048

𝑁

Fusion 
Module 

(Multi-modal 
Transformer)

…

…

…

Figure 13. Our proposed SAT-ScanEnts model. We add a cross-attention layer operating on the 3D object and language features. Our
proposed losses are applied after the added cross-attention layer in a similar manner to the MVT- datasetSuffix model.
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Figure 14. Our proposed modifications to MVT-ScanEnts for exploiting the pair-wise spatial relationships that improve the listening
performance. We propose two losses; Lcontrastive and Lspatial. Lcontrastive aims at better understanding the spatial relationship between
the target object and an anchor object while contrasting the spatial relation between the anchor and the same-class distractor objects. The
Lspatial aims at predicting the spatial relationships between the object pairs where their ground truth spatial relationship is known.

G. Ablation Studies and More Quantitative Re-
sults

Usefulness of exploiting the pairwise spatial relationships
We exploit the extra annotations of the extracted pairwise spa-
tial relationships discussed in Section 3.2 in the main paper.
In Figure 14, we show our modifications to MVT-ScanEnts
neural listener. We introduce two losses that exploit the

pair-wise spatial relations. The first loss Lcontrastive is a
contrastive loss that operates as follows; for a training exam-
ple, we randomly sample a ground-truth spatial relationship
between the target object and an anchor object (the relation-
ship does not necessarily present in the input utterance). The
sampled spatial relationship is valid between the target object
and the anchor while it is valid for none of the same-class
distractor objects. We embed the spatial relation class into a



vector R with dimension d. We then concatenate the object
feature (computed by the PointNet++ encoder [47]) of the
anchor object to the target object feature and the feature of
each of the same-class distractor objects. The concatenated
features are then transformed using an MLP and the gener-
ated features are called F each of dimension d as shown in
Figure 14. We then apply a cosine similarity between the
embedded feature of the spatial relation R and each of the F
features. The Lcontrastive loss is the cross entropy between
the predicted distribution and the ground-truth vector which
is a one-hot vector, where the value of one corresponds to
the target object. The second loss is called Lspatial and it
operates on the context-aware features that are computed
after the cross-modal fusion between the 3D objects and
the input language and it works in the following manner.
For each of the object pairs where the ground-truth spatial
relationships are known, we apply a spatial relation classifi-
cation loss on the concatenated features of the object pairs.
To summarize, the spatial relationship losses are defined as
Lrel = Lcontrastive + Lspatial.

As shown in Table 9, we observe an improvement in
the listening performance when combining the spatial rela-
tionship losses with both the anchor prediction loss and the
same-class distractor loss. However, the performance didn’t
improve when using all four losses together.

Lattn Lanc Ldis Lrel Overall
X X 58.7%
X X X 59.3%
X X X 59.7%
X X X X 59.3%

Table 9. Ablation study on using our proposed losses that ex-
ploit the extracted spatial relationships in the MVT-ScanEnts
model. Our proposed losses cause an improvement in the listening
performance (+1.0%) when being used with the anchor prediction
loss and the same-class distractor loss.

Performance of listener with an increasing number of
scan entities. In Figure 11, we observe that the listening
performance decreases when the difficulty of the input ut-
terances increases where more scan entities and same-class
distractor objects are involved. MVT-ScanEnts performs
better than the original MVT model.

Effectiveness of the pre-trained encoder in the M2cap-
ScanEnts. In Table 11, we show the usefulness of using
a pre-trained object encoder (trained on the neural listening
task), which is discussed in Section 4.2.2 in the main paper.
The usage of the pre-trained encoder improves the perfor-
mance of the M2Cap-ScanEnts neural listener in all of the
four captioning metrics on the Nr3D dataset.

Effectiveness of losses in MVT-ScanEnts. In Table 10,
we show an ablation study upon using our proposed losses
on the MVT-ScanEnts neural listeners. Following [5], we do
testing using five random seeds, and we report the mean and
the standard deviation of the accuracy.

H. Limitations
Our extension of Nr3D and ScanRefer with ScanEnts3D

is based on the original utterances in these two datasets.
Hence, we are constrained in a linguistic corpus where the
grounding language used is English. It would be of inter-
est to explore the efficacy of our method and annotation
approach to other languages, especially to reduce the pos-
sible biases a restrictive set of cultural groups might be
introducing. Moreover, despite achieving SoTA results in
two popular and essential tasks for 3D-based visio-linguistic
grounding tasks, it is clear that our methods are not yet on
par with human-level performance (see Fig. 15). More stud-
ies around competing methods, the underlying supervision
used, and even transfer-learning approaches that can lever-
age e.g., large-scale 2D-based data, or recent foundational
models, are expected to be fruitful in closing the gap between
learning-based methods and human efficacy.



Lattn Lanc Ldis Overall Easy Hard View-dep. View-indep.

55.1%±0.3% 61.3%±0.4% 49.1%±0.4% 54.3%±0.5% 55.4%±0.3%
X 56.6%±0.2% 63.0%±0.3% 50.5%±0.3% 55.4%±0.4% 57.2%±0.2%

X 56.9%±0.3% 63.5%±0.3% 50.6%±0.3% 55.3%±0.4% 57.8%±0.4%
X X 57.4%±0.3% 64.3%±0.4% 50.8%±0.4% 55.6%±0.6% 58.3%±0.3%

X X 57.9%±0.2% 63.7%±0.2% 52.3%±0.2% 56.0%±0.2% 58.9%±0.3%
X 58.1%±0.3% 63.8%±0.5% 52.6%±0.3% 56.7%±0.3% 58.8%±0.4%

X X 58.7%±0.3% 64.6%±0.4% 53.1%±0.4% 57.5%±0.3% 59.3%±0.4%
X X X 59.3%±0.1% 65.4%±0.3% 53.5%±0.2% 57.3%±0.3% 60.4%±0.2%

Table 10. Ablation study on neural listeners. We ablate different combinations of our proposed auxiliary losses on the MVT neural listener,
trained on Nr3D using our proposed ScanEnts3D dataset.

Arch. Nr3D
C B-4 M R

M2Cap 86.15 37.03 30.63 67.00
M2Cap-ScanEnts w/o Pre-trained Encoder 88.68 37.29 31.06 67.35
M2Cap-ScanEnts 93.25 39.33 31.55 68.33

Table 11. Effectiveness of using the pre-trained object encoder in M2Cap-ScanEnts. Using the pre-trained object encoder helps improve
the performance of M2-Cap-ScanEnts neural speakers in all of the four metrics.

“So, if you have the two tables in the back and one table 
in the front, you want the right side”

“if you walk down the stairs and take a right, you will find 
the shelf you seek.” 

Figure 15. Failure examples where the MVT-ScanEnts model struggles to identify the target object (green) because of the complex
language descriptions. The incorrect predictions are highlighted in red color.


