$\mathbb{V} \mathbb{D}-\mathbb{G R}$: Boosting Visual \mathbb{D} ialog with Cascaded Spatial-Temporal Multi-Modal $\mathbb{G} \mathbb{R}$ aphs
 -Supplementary Material-

Appendix

1. Limitations

Although our model managed to outperform previous models on four challenging datasets, it is important to acknowledge some of its limitations: First, $\mathbb{V D}-\mathbb{G} \mathbb{R}$ leverages extra data in the form of adjacency matrices of the multi-modal GNNs and relies on external models to acquire them. Although inferring these models on the VisDial data is cheap, this approach can lead to inaccurate predictions of adjacency matrices, especially for the question and history modalities. Thus, by keeping the graph structures constant, our model's performance might be limited by this introduced noise. This could be remedied in future work by jointly learning the graphs' parameters as well as refining their structures over time [2-4]. Second, similar to almost all previous methods on this task, we did not manage to achieve new state-of-the-art performance across all metrics of this challenging dataset. Finally, inline with previous works $[1,5,7,9-11]$, fine-tuning our model (both in the single model as well as the ensemble setting) on dense annotations improved the most relevant metric of the dataset, i.e. the NDCG score, at the expense of the other (sparse) ones. Although our model's performance dropped with respect to the sparse metrics, we managed to outperform previous works by achieving an NDCG score of 76.43 , which is the main objective of dense annotation fine-tuning.

2. Graph Construction and Pruning

Image Modality. Given two object features \mathbf{v}_{i} and \mathbf{v}_{j}, their bounding boxes and centre coordinates $\left(x_{i}, y_{i}\right)$ and $\left(x_{j}, y_{j}\right)$, we computed the value of their intersection over unions $\mathrm{IoU}_{i j}$ and relative angle $\phi_{i j}$. As shown in Figure 4, there are two spacial cases: The first occurs when the bounding box of \mathbf{v}_{i} completely includes the bounding box of \mathbf{v}_{j} and this class is denoted as inside with index $i=1$. The second occurs when the bounding box of \mathbf{v}_{i} is entirely covered by the bounding box of \mathbf{v}_{j}. This class is denoted as cover with index $i=2$. The remaining classes are solely determined by the value of $\operatorname{Io} \mathrm{U}_{i j}$. If $\operatorname{Io} \mathrm{U}_{i j} \geq 0.5$, then the

Method	VisDialBERT [7]	VD-BERT [9]	VD-PCR [11]	VID-GR
\# Parameters	250 M	250 M	255 M	260 M
Tr. time / epoch	0.6 h	0.6 h	1.00 h	1.05 h

Table 1. Model complexity and runtime comparison with respect to VisDial v1.0 on our hardware setup.
relationship between the objects is denoted as overlap and has the index $i=3$. Finally, if $\operatorname{IoU} \mathrm{U}_{i j}<0.5$, the class index is computed as

$$
i=\left\lceil\frac{\phi_{i j}}{0.25 \pi}\right\rceil+3
$$

By construction, all classes of index $i \neq 3$ are pairwise symmetric as can be seen from Figure 1a where we plotted the distribution of the different image graph relationship classes over the training split of VisDial v1.0.

Question Modality. The question graph relationship classes were determined by the dependency between the question words. To this end, we input each question to the Stanza dependency parser that output the classes between the different word pairs resulting in a total of 47 classes. As shown in Figure 1b, the distribution of these classes within the VisDial v1.0 training split is not uniform with det and nsubj being the most frequent. We illustrate a qualitative sample in Figure 2.

History Modality. We relied in coreference resolution to construct the history graph. Specifically, an edge exists between two rounds i and $j(i>j)$ if and only if a word in round j was used to reference another word in round i. The only exception is the caption C that links to all upcoming rounds in the history even if there is no explicit coreference between them. We posit that the caption is complementary to the visual input and helps the model better understand the scene. We illustrate a qualitative sample in Figure 3.

3. Model Complexity

The overhead for constructing the multi-modal graphs only incurs once during a cheap offline pre-processing stage and therefore does not lead to crucial increase in compute complexity, i.e. number of trainable parameters and epoch training time, compared with previous seminal models, e.g. VisDial-BERT [7], VD-BERT [9], and VD-PCR [11], as can be seen in Table 1.

Figure 1. Right: The distribution of the image graph relationship classes within the training split of VisDial v1.0. Left: The distribution of the question graph relationship classes within the training split of VisDial v1.0.

Figure 2. A qualitative sample of the dependency relationships between question word pairs.

4. Training Details

We implemented our model using PyTorch [8] and trained it on a server with 8 NVIDIA Tesla V100 GPUs using an effective batch size of 64 and Adam optimiser [6] with a linear decay learning rate schedule with warm-up. We set the initial learning rates of the BERT and GNN weights to 5×10^{-6} and 5×10^{-4}, respectively. Furthermore, we set the loss coefficients $\alpha_{1}=\alpha_{2}=1$ and the residual connection coefficient $\lambda=0.5$. We refer to Table 2 for a complete overview of our experimental setup.

5. Additional Qualitative Results

We present additional qualitative examples from the val split of VisDial v1.0 in Figure 5 and Figure 6. As in the main text, we compared the top-1 predictions of $\mathbb{V D}$ - $G \mathbb{R}$ with the ground-truth and the predictions of VD-PCR since it achieved the second best performance on this split.

Figure 3. A qualitative sample of the coreference relationships between different dialog rounds. The hub-node was not visualised for clarity.

References

[1] Cheng Chen, Yudong Zhu, Zhenshan Tan, Qingrong Cheng, Xin Jiang, Qun Liu, and Xiaodong Gu. UTC: A Unified Transformer with Inter-Task Contrastive Learning for Visual Dialog. In CVPR, 2022. 1
[2] Yu Chen, Lingfei Wu, and Mohammed J. Zaki. Iterative deep graph learning for graph neural networks: Better and robust node embeddings. In NeurIPS, 2020. 1
[3] Pantelis Elinas, Edwin V. Bonilla, and Louis C. Tiao. Variational inference for graph convolutional networks in the absence of graph data and adversarial settings. In NeurIPS, 2020. 1
[4] Luca Franceschi, Mathias Niepert, Massimiliano Pontil, and Xiao He. Learning discrete structures for graph neural networks. In ICML, 2019. 1
[5] Gi-Cheon Kang, Junseok Park, Hwaran Lee, Byoung-Tak Zhang, and Jin-Hwa Kim. Reasoning visual dialog with sparse graph learning and knowledge transfer. In Findings of $E M N L P, 2021.1$
[6] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR, 2015. 2
[7] Vishvak Murahari, Dhruv Batra, Devi Parikh, and Abhishek Das. Large-scale pretraining for visual dialog: A simple state-of-the-art baseline. In ECCV, 2020. 1, 2
[8] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An Imperative Style, High-Performance Deep Learning Library. In NeurIPS, 2019. 2

Figure 4. The different spatial relationships (without the hub-node relationship) used in constructing the image graph. The orange and green rectangles correspond to the bonding boxes of two objects within the scene.

Hyper-parameter	Training Stage		
	Warm-up	Sparse fine-tuning	Dense fine-tuning
Number of GNN layers K	2	2	2
Number of GNN heads H	4	4	,
Residual connection coefficient λ	0.5	0.5	0.5
Dimension of $\mathrm{GNN}_{\mathcal{I}}$ node features	1024	1024	1024
Dimension of $\mathrm{GNN}_{\mathcal{Q}}$ node features	768	768	768
Dimension of $\mathrm{GNN}_{\mathcal{H}}$ node features	768	768	768
Dimension of $\mathrm{GNN}_{\mathcal{I}}$ edge features	12	12	12
Dimension of $\mathrm{GNN}_{\mathcal{Q}}$ edge features	48	48	48
Dimension of $\mathrm{GNN}_{\mathcal{H}}$ edge features	2	2	2
Dimension of Linear $\mathcal{I} \rightarrow \mathcal{H}^{(.)}$	$(1024,768)$	$(1024,768)$	$(1024,768)$
Dimension of Linear ${ }_{\mathcal{Q} \rightarrow \mathcal{I}}($.	$(768,1024)$	$(768,1024)$	$(768,1024)$
Maximum number of text tokens	256	256	256
Maximum number of image regions	37	37	37
Text token mask probability	0.1	0.1	-
Image region mask probability	0.1	0.1	-
Graph edge mask probability	0.15	-	-
Optimiser	Adam	Adam	Adam
Minimum learning rate of BERT parameters	0	0	1×10^{-5}
Minimum learning rate of GNN parameters	0	0	1×10^{-5}
Maximum learning rate of BERT parameters	5×10^{-6}	5×10^{-6}	2×10^{-5}
Maximum learning rate of GNN parameters	5×10^{-4}	5×10^{-4}	1×10^{-4}
Learning rate warm-up of BERT parameters	True	True	True
Learning rate warm-up of GNN parameters	True	True	True
Learning rate schedule of BERT parameters	Linear	Linear	Linear
Learning rate schedule of GNN parameters	Linear	Linear	Linear
Training Loss	$\mathcal{L}_{\text {warm }}$	$\mathcal{L}_{\text {VD }}$	$\mathcal{L}_{\text {CE }} / \mathcal{L}_{\text {ListNet }}$
Number of epochs	5	20	3
Effective batch size	64	64	100
GPU Model	Tesla V100-32GB	Tesla V100-32GB	Tesla V100-32GB
Number of GPUs	8	8	8
Distributed training	Apex	Apex	PyTorch DP

Table 2. Hyper-parameter settings of $\mathbb{V} \mathbb{D}-\mathbb{G} \mathbb{R}$ for the different stages of training. Linear $\mathcal{I}_{\rightarrow \mathcal{H}}($.$) and Linear { }_{\mathcal{Q} \rightarrow \mathcal{I}}($.$) denote the linear$ layers that produce the history and image hub-node features, respectively.
[9] Yue Wang, Shafiq Joty, Michael R. Lyu, Irwin King, Caiming Xiong, and Steven C.H. Hoi. VD-BERT: A unified vision and dialog transformer with BERT. In EMNLP, 2020. 1, 2
[10] Zihao Wang, Junli Wang, and Changjun Jiang. Unified multimodal model with unlikelihood training for visual dialog. In ACM MM, 2022. 1
[11] Xintong Yu, Hongming Zhang, Ruixin Hong, Yangqiu Song,
and Changshui Zhang. VD-PCR: Improving visual dialog with pronoun coreference resolution. Pattern Recognition, 2022. 1, 2

Predictions
Q_{1} : How old is the couple?
A_{1} : It's hard to tell i can only see their backs Q_{2} : What color is the girl's hair? A_{2} : It's black
Q_{3} : What color is the bench?
A_{3} : Male
Q_{4} : Is there a lot of trees? A_{4} : Yes, in the distance VD-GR: Yes, in the distance VD-PCR: Yes it is 0
of a field of trees
Predictions
$Q_{1}:$ Is there only 1 polar bear?
$A_{1}:$ Yes
$Q_{2}:$ Is the rock large?
$A_{2}:$ I don't see the whole rock
$Q_{3}:$ What color is the rock?
$A_{3}:$ Dark concrete
$Q_{4}:$ Does the bear look to be a
$A_{4}:$ I am not sure, it is zoome
$Q_{5}:$ Can you see the water?
$A_{5}:$ No
VD-GR: No
VD-PCR: I don't think so *

Qredictions
Q_{1} : What color is the hat?
A_{1} : It is light beige
Q_{2} : What color is the clock??
A_{2} : the pole is green and the face is white
Q_{3} : What color is the boy's shirt? A_{3} : White
Q_{4} : What color is his pants?
A_{4} : I cannot see his pants
Q_{5} : Is it sunny outside?
A_{5} : It is partly sunny, yes
$\mathbb{V} \mathbb{D}-\mathbb{G} \mathbb{R}$: It is partly sunny, yes θ
VD-PCR: Overcast *

Predictions

Q_{1} : What color are the boats?
A_{1} : white on the bottom and have different color trims: blue, green, red, and yellow
Q_{2} : Are they sail boats?
A_{2} : No, row boats
Q_{3} : Are there people in the picture?
A_{3} : No
Q_{4} : Is it a sunny day?
A_{4} : No, it looks somewhat cloudy
Q_{5} : Are the boats tied to a pier?
A_{5} : To a dock
Q_{6} : How many boats are there?
A_{6} : At least 9
VD-GR: At least 9 -
VD-PCR: 4 visible and the arm of 1 just out of pi

Predictions A_{1} : How many doughnuts do you see? $\mathrm{A}_{1}: 1$
Q_{2} : What kind of doughnuts?
A_{2} : Backed
Q_{3} : Any toppings on the doughnut?
A_{3} : Yes
Q_{4} : Anything else on the shelf?
A_{4} : Sugars, other baked stuff
VD-GR: Sugars, other baked stuff Θ VD-PCR: The mirror *
An assortment of doughnuts on a white shelf
Image \& Caption
Predictions
3 young men are smiling and looking at a
scene to the left of the camera

Predictions
Q_{1} : Is the image in color?
A_{1} : Yes
Q_{2} : What color is the plate?
A_{2} : Yellow
Q_{3} : What color are the pastries?
A_{3} : Mostly brown
Q_{4} : What color is the hill?
A_{4} : Brown with white icing
VID-GR: Brown with white icing Θ
A plate displays chocolate pastries molded \mathcal{F} VD-PCR: it is white \propto to look like train cars winding around a hill

Image \& Caption

The dog is sitting in the basket in the dar

Predictions
Q_{1} : Are there other dogs?
A_{1} : No, just the one
Q_{2} : What kind of dog is it?
A_{2} : Looks like a schnauzer
Q_{3} : Does the dog have a blanket?
A_{3} : He does, it's next to him
Q_{4} : What color is the dog?
A_{4} : Black \& brown
Q_{5} : Does it look happy?
A_{5} : He looks super happy
Q_{6} : Is there food near it?
A_{6} : No
Q_{7} : Are there doggy toys?
A_{7} : In the background there appears to
VID- 1 on the floor
to be 1 on the floor
VD-PCR: 1 *

Figure 5. Qualitative samples from the val split of the VisDial v1.0 dataset. We compared the predictions of $\mathbb{V D D}-\mathbb{G} \mathbb{R}$ (orange) with the ground truth answers (blue) and the predictions of VD-PCR (pink). The answers of both models correspond to the top-1 predictions.

Predictions
Q_{1} : How many cows aredions
A_{1} : More than 10 it's hard to see them
Q_{2} : Does the photo look vintage? A_{2} : Slightly
Q_{3} : Are there any people near?
A_{3} : No

Q_{7} : Can you tell what the weather is like? A_{7} : Appears to be slightly cloudy
 Q_{8} : Are there any calves present? A_{8} : Possibly it is hard to tell VD-GR: Possibly it is hard to tell VD-PCR: 1 other 1 in the background *

Predictions

Q_{1} : Can you see the beach?
A_{1} : Yes
Q_{2} : Is it sunny?
A_{2} : No
Q_{3} : Are the men smiling?
A_{3} : I think so, 1 is looking backwards
Q_{A} : Can you see the sky?
A_{7} : No
Q_{8} : Are the waves tall?
A_{8} : No there are medium size
$\mathbb{V D}-\mathbb{G R}$: No there are medium size
VD-PCR: Yes, they are *

Predictions
$\mathrm{Q}_{1}:$ Can you see the person?
$\mathrm{A}_{1}:$ No
$\mathrm{Q}_{2}:$ Is it just hair?
$\mathrm{A}_{2}:$ Yes
$\mathrm{Q}_{3}:$ Is it straight hair?
$\mathrm{A}_{3}:$ Wavy

$\mathrm{Q}_{9}:$ Are they short and curly hairs?
$\mathrm{A}_{9}:$ Short
$\mathrm{Q}_{10}:$ Is it a coyote?
$\mathrm{A}_{10}:$ It could be
VID-GR: It could be
VD-PCR: Black $*$

Predictions

Q_{1} : Is the man's jacket light or dark blue?
A_{1} : Light blue
Q_{2} : Does he have ski poles?
A_{2} : Yes
Q_{3} : Are they black?
A_{3} : No
Q_{7} : What color are his boots?
A_{7} : I can hardly see them
Q_{8} : Are there any trees?
A_{8} : No
VD-GR: Not really ${ }^{*}$
VD-PCR: Not really *

Predictions

Q_{1} : What color is the umbrella?
A_{1} : Bright pink with little birds and flowers Q_{2} : What is the woman doing?
A_{2} : Walking on the sidewalk
Q_{3} : Do you see any animals?
A_{3} : No animals
Q_{4} : Is the sidewalk clean?
A_{4} : Yes looks very clean
VID-GR: Can't really tell from the picture VD-PCR: Yes looks very clean

The black and white photo shows a
woman with an umbrella

Predictions

Q_{2} : What color are the sinks?
A_{2} : They are white
Q_{3} : Is the mirror square?
A_{3} : Rectangular
Q_{4} : Does the mirror have a frame?
A_{4} : They open, so yes
Q_{5} : Can you see a reflection in the mirror? A_{5} : Just of the bathroom
VD-GR: Yes ${ }^{*}$
VD-PCR: Yes *

Predictions

 Q_{1} : About how many people are there? $\mathrm{A}_{1}: 6$$\mathrm{Q}_{2}$: Are they adults?
A_{2} : Yes
Q_{3} : What are their genders?
$\mathrm{A}_{3}: 2$ women and 4 men
Q_{9} : Do people have plates in their hands?
A_{9} : No
Q_{10} : Is this indoors?
A_{10} : Yes
VD-GR: Yes ${ }^{\circ}$
VD-PCR: Yes \odot
A_{1} : It is

Figure 6. Qualitative samples from the val split of the VisDial v1.0 dataset. We compared the predictions of $\mathbb{V D}-\mathbb{G} \mathbb{R}$ (orange) with the ground truth answers (blue) and the predictions of VD-PCR (pink). The answers of both models correspond to the top-1 predictions.

