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1. Animated Blender Dataset
We show a more detailed view of our results on the ani-

mated Blender dataset in Suppl. Table 1. Visuals can found
in Suppl. Figure 1.

2. Ablation Studies
Physics vs Adam In Suppl. Figure 3, we update the par-

ticle positions on the wheel dataset using Adam instead of
using the PBD physics system. Our results show that the
physics system produces higher quality reconstructions in
dynamic scenes when compared to Adam.

Selecting the Gradient Scale Suppl. Figure 4 shows
how the gradient scale α – used to integrate the positions
gradients into the particle velocities – was chosen for the
wheel dataset. A small α creates a noticeable drop in qual-
ity when the wheel begins to rotate at frame 100 because
the particle velocities take longer to adjust to the required
speed. A large gradient scale creates particle instability.

Long Running Scene In Suppl. Figure 5, the wheel
experiment is run for around 2000 frames at 2.4◦/second.
We observe a degradation in quality over time as a re-
sult of particles slowly losing neighbours during the move-
ment. When particles lose all their neighbours, a degener-
ate case occurs which inhibits other particles from reassem-
bling within each other’s search radius. This can be ad-
dressed in future work by creating a particle growing strat-
egy that detects this case and does not allow lone particles to
exist. Note, however, that even at the lowest reconstruction
quality, the wheel maintains its shape.

Full Scene We also visually demonstrate in Suppl. Fig-
ure 6 that ParticleNeRF can be used to reconstruct a full
scene – albeit at a reduced reconstruction quality when com-
pared to InstantNGP.

3. Implementation Details
InstantNGP uses an occupancy grid as an acceleration

structure to skip evaluating points in free space. In the orig-

inal implementation, this structure was updated every 16
training steps by evaluating the density at each vertex in
the grid. This worked well for static scenes because it was
expected that the densities of the points would converge
to their values and not change thereafter. In our dynamic
scenes, we update the occupancy grid at every training step
for both InstantNGP and ParticleNeRF. This allows the ac-
celeration structure to quickly change with the scene and
therefore does not inhibit training in areas which were once
unoccupied but have since become occupied.

Towards Realtime In our dynamic dataset, out of the
100,000 particles initialized in the scene, only around
7000 are actually contributing to the geometry of the ob-
ject. If we prune away particles with a density less than
a certain threshold, our system can run a single train-
ing step in under 6 ms. A pruning strategy however
must be paired with a growing strategy so that particles
can appear again when they are needed. A simple im-
plementation of a growing strategy would be to repli-
cate particles with less than a certain number of neigh-
bours. The implementation of a pruning and growing strat-
egy will be released with ParticleNeRF’s codebase and a
video of it in operation can be seen in the project website
https://sites.google.com/view/particlenerf. However, mak-
ing that strategy sufficiently robust for online usecases is
left for future work.

The computational cost of updating the acceleration
structure at each training step is high, particularly for a Par-
ticleNeRF with a large number of particles, as shown in
Suppl. Figure 7. To address this issue, an alternative ac-
celeration structure that exploits the point-based nature of
the encoding can be utilized. One such system is Nvidia’s
Optix framework which utilizes hardware raytracing cores
to perform quick traversal of a scene.

Finally, we observe that the backward pass takes 5 times
longer than the forward pass despite having a similar num-
ber of computations. The difference is due to the memory
contention caused by multiple query points trying to up-
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Supplementary Figure 1. We test our encoding on an animated version of the Blender dataset. (a) shows an object rotating around its
up axis. (b) shows an object translating from side to side. InstantNGP cannot learn features fast enough to maintain a high quality
reconstruction. ParticleNeRF is able to move its features in space and maintain the structure of the object.

Supplementary Table 1. Performance of InstantNGP and ParticleNerf on the Animated Blender Dataset reported through the mean and
standard deviation of the photometric PSNR over 100 frames.

Model Chair Drums Ficus Hotdog Lego Materials Mic ShipStep
per Frame Encoding

Hash 27.43 21.82 26.40 30.13 27.00 25.25 29.61 22.24

St
at

ic

Particle 24.60 19.93 22.92 27.35 23.23 23.33 28.06 23.09

Hash 21.30 ± 2.3 18.72 ± 1.4 22.44 ± 0.9 25.71 ± 1.1 21.07 ± 1.4 21.28 ± 1.5 26.42 ± 1.0 22.71 ± 1.11◦ Particle 24.02 ± 1.4 19.70 ± 1.2 22.85 ± 0.7 27.02 ± 0.8 22.77 ± 1.1 23.23 ± 1.2 27.77 ± 0.5 23.04 ± 1.0
Hash 18.20 ± 1.9 17.76 ± 1.3 21.80 ± 0.9 24.13 ± 1.2 19.25 ± 1.4 18.80 ± 1.5 24.07 ± 1.0 22.15 ± 1.22◦ Particle 23.02 ± 1.4 19.26 ± 1.2 22.23 ± 0.7 26.83 ± 0.8 22.01 ± 1.1 22.65 ± 1.2 26.97 ± 0.5 22.93 ± 1.0
Hash 16.91 ± 1.7 16.92 ± 1.2 21.19 ± 0.9 23.22 ± 1.3 18.29 ± 1.5 17.20 ± 1.5 22.76 ± 1.4 21.64 ± 1.43◦ Particle 21.94 ± 1.5 18.72 ± 1.3 21.77 ± 0.8 26.15 ± 0.8 21.32 ± 1.1 22.11 ± 1.2 26.32 ± 0.6 22.64 ± 1.0
Hash 16.56 ± 1.8 16.38 ± 1.0 20.66 ± 1.0 22.77 ± 1.4 17.65 ± 1.7 16.72 ± 1.5 22.99 ± 1.1 21.53 ± 1.3

R
ot

at
io

n

4◦ Particle 21.16 ± 1.5 18.26 ± 1.2 21.13 ± 0.8 25.45 ± 0.9 20.73 ± 1.2 21.38 ± 1.3 25.28 ± 0.7 22.21 ± 1.1

Hash 22.60 ± 2.1 19.06 ± 1.5 22.13 ± 0.8 25.18 ± 1.7 21.40 ± 1.6 22.87 ± 1.6 27.06 ± 1.1 21.89 ± 1.4
1 cm Particle 24.20 ± 1.4 19.68 ± 1.3 22.43 ± 0.7 26.11 ± 1.5 22.85 ± 1.1 23.34 ± 1.3 28.03 ± 0.6 22.69 ± 1.2

Hash 19.24 ± 2.1 17.68 ± 1.4 21.38 ± 0.9 22.97 ± 1.7 20.06 ± 1.6 21.07 ± 1.9 24.43 ± 1.3 21.41 ± 1.3
2 cm Particle 23.15 ± 1.3 19.31 ± 1.3 21.60 ± 0.7 25.38 ± 1.2 22.07 ± 1.1 23.06 ± 1.2 27.12 ± 0.7 22.71 ± 1.1

Hash 17.90 ± 2.0 17.12 ± 1.3 21.11 ± 0.9 21.45 ± 1.8 19.37 ± 1.8 19.18 ± 2.3 23.47 ± 1.4 21.07 ± 1.4Tr
an

sl
at
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n

3 cm Particle 22.15 ± 1.4 18.80 ± 1.2 20.94 ± 0.7 24.28 ± 1.3 21.29 ± 1.2 22.69 ± 1.2 26.16 ± 0.7 22.15 ± 1.2



date the same set of neighbouring particles. This too can
be alleviated in future work. This issue can be addressed
by changing the ray sampling procedure. Instead of sam-
pling rays from every camera in a training iteration, rays
can be sampled from only one camera at a time. This mini-
mizes the chance memory contention on the atomics. In this
work, we chose to keep the training procedue as similar to
InstantNGP’s as possible.

4. SE(3) Invariance and Interpretability
Our encoding is invariant under 3D rigid transforma-

tions. For a transformation T ∈ SE(3):

fj = F (xj ,P) = F (Txj , T ◦ P) (1)

where

T ◦ P = {(Txi, Tvi, fi) : i = 1, 2, ...,M} (2)

Our particle encoding approach generates local features
that are directly associated with local geometry patches. As
a result of its SE(3) invariance, when these particles are
moved or deformed, the underlying geometry will be sim-
ilarly affected. For instance, if a subset of particles repre-
senting an object within a scene is moved or deformed, the
corresponding geometry will change in predictable ways.
In contrast, non-parametric NeRF methods encode geom-
etry within the weights of a neural network. There is no
natural transformation that can be applied to the weights
that would change the scene in predictable ways. Addition-
ally, voxel-based features, particularly those using a multi-
level approach, cannot be easily transformed to modify the
scene. The lack of controllability and interpretability over
these features creates two challenges: (i) It is challenging to
apply motion priors in dynamic scenes - for example in the
case where a certain object’s velocity is known. This limi-
tation was also identified by the authors of TiNeuVox. (ii)

Groundtruth Degenerate Case 

Supplementary Figure 2. A degenerate case occurs when none of
the particles have any neighbours within their search radius. The
resulting reconstruction manifests as a set of spheres due to the in-
ability of one particle alone to express more complicated geome-
tries.

The usefulness of NeRFs as a representation of geometry
is limited when the underlying features lack the invariance
property. Therefore, NeRFs without the invariance property
are primarily suitable for view synthesis and not as a new
method of geometry representation in downstream tasks.

5. Degenerate Case
The interpolated features around a lone particle will be

the same along the surface of a sphere centered on that
particle. The effect is shown visually in Suppl. Figure 2
where we reduce the number of particles in the scene to
200 and ensure that every particle has no neighbours within
its search radius. In our experiments, we used a sufficient
number of particles when initializing the scene to circum-
vent the issue. Future work can develop a particle growing
algorithm that detects lone particles and creates neighbours
in their vicinity.

6. Timing Information
The training times per step are [ParticleNeRF

40ms], [InstantNGP 8ms], [TiNeuVox-S
50ms], [TiNeuVox 130ms]. The 200 ms for
ParticleNerf we mention in the abstract is the time taken
for 5 steps which we found sufficient to adapt to changes
in the scene. Further optimizations discussed in “Towards
Realtime” (Section 3) achieve a training time of below 6
ms per step.

7. Typical Recovery
The training steps the baselines typically need to repre-

sent changes in the scene is dependant on the speed of the
motion. We use the wheel scene from Fig. 6 which turns
at successively faster rates to explore the average number of
steps needed for each method to fully recover. ParticleN-
eRF only needs 5 training steps per frame for all speeds of
the wheel. At low speeds, InstantNGP matches ParticleN-
eRF’s reconstruction quality with 15 steps. At medium and
high speeds, InstantNGP requires 20 and 40 training steps
respectively. TiNeuVox requires 40 steps at all speeds.
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Supplementary Figure 3. A comparison between using Adam and the physics system to update the particle positions after calculating their
gradients relative to the NeRF reconstruction loss. Integrating the gradients with the physics system produces higher quality reconstructions
on the wheel dataset whilst providing a well formulated means of adding constraints. Adam is configured with β1 = 0.9, β2 = 0.99 and a
learning rate which is indicated in the legend.
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Supplementary Figure 4. An ablation performed on the wheel dataset with 100,000 particles and a search radius of 0.04 showing the impact
of the gradient scale α used to combine the NeRF gradients with the particle velocities. Values around 2.0 have the best results.
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Supplementary Figure 5. Figure showing degradation that occurs over a longer sequence of the Wheel dataset. The initial loss in quality
is because the transition from static to 2.4 degrees is more sudden than the static to 1.2 degrees used in earlier experiments. Degradation
occurs as particles begin to lose neighbours and are unable to acquire new ones.



Supplementary Figure 6. ParticleNeRF trained on a full scene after 3000 training steps with 200,000 particles at a search radius of 0.02.
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Supplementary Figure 7. We profile ParticleNeRF and InstantNGP and show where the majority of the training time is spent per training
step. The time taken by the acceleration structure (Grid), the forward pass, the backward pass, and the physics system are recorded for a
range of configurations. InstantNGP is also shown on the right.


