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S1. Analysis on Data Efficiency

In Sec. 4.4 we show that ARNIQA achieves state-of-the-
art performance on several IQA datasets with both synthetic
and authentic distortions. In addition, our approach proves
to be more data-efficient than competing self-supervised
methods, since it requires fewer training examples.

We recall that we rely on the 140K pristine images
from the KADIS dataset [7] synthetically distorted with our
degradation model to train our model. Given that we con-
sider images both at full-scale and half-scale (see Sec. 3.2),
we double the size of the training dataset. For all of the
experiments, we train our model for 10 epochs. Therefore,
for training, we use a total of 140K (training dataset) × 2
(scales) × 10 (epochs)=2.8M images.

In contrast, CONTRIQUE [10] considers a combina-
tion of images with synthetic and authentic distortions for
training, for a total of 1.3M. Specifically, the authors use
the 700K synthetically distorted images from the KADIS
dataset and the union of 4 datasets with realistic distortions:
255K images from AVA [13], 330K images from COCO
[8], 2450 images from CERTH-Blur [11], 33K images from
VOC [3]. The CONTRIQUE model employs both full-
scale and half-scale images and is trained for 25 epochs.
Therefore, the total number of training examples required
by CONTRIQUE is given by 1.3M (training dataset) × 2
(scales) × 25 (epochs)=65M.

Instead, Re-IQA uses two different datasets, both at full-
scale and half-scale, as well as a diverse number of epochs,
for the content-aware and the quality-aware encoder. In par-
ticular, the authors train the content-aware encoder on the
1.28 images of the ImageNet dataset [1] for 200 epochs.
Thus, the total number of training examples for the content-
aware encoder is given by 1.28M (training dataset) × 2
(scales) × 200 (epochs) = 512M. For the quality-aware
encoder, Re-IQA uses the 140K pristine images from the
KADIS dataset and the same combination of datasets with
authentic distortions as CONTRIQUE, for a total of 760K

images. Given that the authors train the quality-aware en-
coder for 25 epochs, the total number of training examples
results in 760K (training dataset) × 2 (scales) × 25 (epochs)
=38M. Considering both the content-aware and the quality-
aware encoders, Re-IQA requires a total of 550M images
for training.

Ultimately, despite using only the 4.3% and 0.5% of the
training examples compared, respectively, to CONTRIQUE
and Re-IQA, ARNIQA manages to achieve state-of-the-art
performance on several IQA datasets, thereby showing im-
proved data efficiency.

S2. Additional Experimental Results
S2.1. Full-Reference Image Quality Assessment

We can easily extend our approach to the Full-Reference
Image Quality Assessment (FR-IQA) task. FR-IQA aims
to evaluate the quality of a distorted image in the setting in
which a high-quality reference version is available. Simi-
larly to [10, 15], we incorporate the information provided
by the reference image with:

y = W |href − hdist| (S1)

where y is the quality score, W indicates the trainable
weights of the regressor, and href and hdist are the rep-
resentations of the reference and distorted image, respec-
tively. Therefore, the regressor predicts the quality score
associated with the difference between the embeddings of
the reference and the distorted image.

We follow the same evaluation protocol described in Sec.
4.3, thereby not fine-tuning the encoder weights for the
FR-IQA task. Note that we can only evaluate the perfor-
mance on FR-IQA with datasets consisting of synthetic dis-
tortions, given the unavailability of a reference image for
datasets with realistic degradations. We report the results in
Tab. S1. Despite being designed for NR-IQA, ARNIQA ob-
tains competitive results also on FR-IQA, thus further prov-
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LIVE CSIQ TID2013 KADID
Method Type SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC

PSNR

Traditional

0.881 0.868 0.820 0.824 0.643 0.675 0.677 0.680
SSIM [16] 0.921 0.911 0.854 0.835 0.642 0.698 0.641 0.633
FSIM [18] 0.964 0.954 0.934 0.919 0.852 0.875 0.854 0.850
VSI [17] 0.951 0.940 0.944 0.929 0.902 0.903 0.880 0.878

PieAPP [14]
Deep

learning

0.915 0.905 0.900 0.881 0.877 0.850 0.869 0.869
LPIPS [19] 0.932 0.936 0.884 0.906 0.673 0.756 0.721 0.713
DISTS [2] 0.953 0.954 0.942 0.942 0.853 0.873 – –
DRF-IQA [5] 0.983 0.983 0.964 0.960 0.944 0.942 – –

CONTRIQUE-FR [10]
SSL + LR

0.966 0.966 0.956 0.964 0.909 0.915 0.946 0.947
Re-IQA-FR [15] 0.969 0.974 0.961 0.962 0.920 0.921 0.933 0.936

ARNIQA-FR SSL + LR 0.969 0.972 0.971 0.975 0.898 0.901 0.920 0.919

Table S1. Comparison between the proposed approach and competing methods for the FR-IQA task. Best and second-best scores are
highlighted in bold and underlined, respectively, – denotes results not reported in the original paper. SSL and LR stands for self-supervised
learning and linear regression, respectively.

ing the effectiveness of our approach. Moreover, we ob-
serve that the additional information provided by the high-
quality reference image leads to improved performance,
compared to the NR-IQA setting reported in Tab. 1.

S2.2. Regressor Regularization Coefficient

We recall that during evaluation we freeze the encoder
weights and map the image representations to quality scores
using simple linear regression, as in Re-IQA [15]. Similarly
to CONTRIQUE [10] and Re-IQA [15], we use the valida-
tion split of each dataset to identify the regularization coeffi-
cient of the Ridge regressor [4] via a grid search over values
within the range

[
10−3, 103

]
. To assess the robustness of

both ARNIQA and Re-IQA with respect to the choice of the
regularization coefficient of the Ridge regression, we con-
duct an evaluation considering various values in the range[
10−3, 103

]
. Table S2 shows the results for the SRCC met-

ric on the validation set of the KADID dataset [7]. As ex-
plained in Sec. 4.3, we report the median of the results of
10 random training/validation/test splits. We observe that
our approach is significantly more robust than Re-IQA. In
fact, the difference ∆ between the best and worst results ob-
tained for the various values of the regularization coefficient
is considerably lower compared to Re-IQA.

S2.3. gMAD Competition

We conduct the group maximum differentiation (gMAD)
competition [9] between ARNIQA and CONTRIQUE [10]
to evaluate the robustness of our model. See Sec. 4.4 for
more details about gMAD. We report the results in Fig. S1.
When we fix ARNIQA at a low-quality level (Fig. S1a),
CONTRIQUE struggles to identify picture pairs with a clear
quality disparity. On the contrary, when fixing ARNIQA at
a high-quality level, the image pair found by CONTRIQUE
shows a slight divergence in quality. However, when act-
ing as the attacker (Figs. S1c and S1d), ARNIQA succeeds
in highlighting the failures of CONTRIQUE by identify-

Method

Coefficient Re-IQA† ARNIQA

α=0.001 0.499 0.900
α=0.01 0.565 0.907
α=0.1 0.690 0.912
α=1 0.763 0.914
α=10 0.842 0.907
α=100 0.862 0.894
α=1000 0.858 0.859

Best 0.862 0.914
Worst 0.499 0.859
∆ 0.368 0.055

Table S2. Results for varying regressor regularization coefficient
α for the SRCC metric on the validation set of the KADID dataset
[7]. ∆ indicates the difference between the best and worst scores.
† denotes results evaluated by us with the official pre-trained mod-
els. The best scores are highlighted in bold.

ing image pairs exhibiting considerably different quality.
Therefore, our method demonstrates superior robustness to
that of CONTRIQUE.

S2.4. Manifold Visualization

We carry out an experiment to visualize the inherent
structure of the distortion manifold learned by our model.
Given two distortion types, our aim is to study the positions
occupied in the manifold by images that exhibit both sin-
gle and combined degradation patterns with varying levels
of intensity. For a model that effectively learned the image
distortion manifold, we expect images showing combined
degradation patterns to occupy positions within the mani-
fold that are intermediate to the locations associated with
the single distortions themselves.

To conduct this study, we consider 1000 randomly se-
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Figure S1. gMAD competition results between ARNIQA and
CONTRIQUE [10]. (a) and (b): Fixed ARNIQA at a low- and
high-quality level, respectively. (c) and (d): Fixed CONTRIQUE
at a low- and high-quality level, respectively.

lected pristine images from the KADIS dataset [7] and the
Gaussian blur and white noise distortions (see Sec. S3.2 for
more details). First, we distort the images individually with
each of the two degradations under consideration, using 5
different levels of intensity. Then, we consider all the possi-
ble combinations of the degrees of intensity of the Gaussian
blur and white noise distortions, taken in this order. Finally,
we distort each of the pristine images with each combina-
tion by applying the two distortions consecutively. There-
fore, for each image, we obtain 5 + 5 embeddings corre-
sponding to the single blur and noise distortions, and 5 × 5
representations for the combined ones.

Figures S2a and S2b shows the UMAP visualization
[12] of the embeddings obtained with Re-IQA [15] and
ARNIQA, respectively. As we can see, compared to Re-
IQA, our approach leads to a smoother transition between
the points corresponding to the single and combined degra-
dations. Indeed, the stronger the intensity of the noise dis-
tortion, the closer the points are to the cluster of images de-
graded only with white noise. Note that most of the points
corresponding to combined degradation patterns lie closer
to the cluster of images distorted only with white noise as it
was applied after the blur. Indeed, the final degradation in a
distortion composition corresponds to more visible patterns,
as they are not modified by subsequent degradations.

S3. Image Degradation Model
S3.1. Distortion Compositions

In Fig. S3 we report some examples of images belonging
to the KADIS dataset [7] subjected to distortion composi-
tions obtained through our image degradation model. We
notice how the proposed degradation model leads to images
showing a large variety of distortion patterns. In this way,

(a) Re-IQA [15]

(b) ARNIQA

Figure S2. Manifold visualization with UMAP [12] of the embed-
dings of 1000 images degraded with Gaussian blur and white noise
distortions, applied in this order. The color of each point is given
by the weighted average between the colors of blur (red) and noise
(yellow), based on the degradation intensity. A higher alpha value
corresponds to a stronger degradation intensity.

our model is able to effectively learn the image distortion
manifold.

S3.2. Distortion Types

Our image degradation model considers 24 different
degradation types divided into the 7 distortion groups de-
fined by the KADID dataset [7]. Each distortion has 5 levels
of increasing intensity. Figures S4 to S10 shows the differ-
ent levels of intensity for the degradations of each distortion
group. The distortion types that we consider are mainly in-
spired by those of the KADID dataset and are described in
the list below:

1. Brightness change:

• Brighten: applies a sequence of color space
transformations, curve adjustments, and blend-
ing operations to enhance the brightness of an
input image, resulting in an output image with
increased visual intensity;



Figure S3. Comparison between pristine images from the KADIS dataset [7] and their distorted versions using the proposed degradation
model. Top: Pristine images. Bottom: Distorted images.

• Darken: similar to brighten operation, but it leads
to a decreased visual intensity;

• Mean shift: changes the average intensity of im-
age pixels by adding a fixed amount to all the
pixel values. Then, limits the resulting values to
remain within the initial image range;

2. Blur:

• Gaussian blur: filters every pixel of the image
with a simple Gaussian kernel.

• Lens blur: filters every pixel of the image with a
circular kernel;

• Motion blur: filters every pixel of the image with
a linear motion blur kernel to simulate the effect
of a moving camera or a moving object in the
scene. Consequently, the image appears blurred
in the direction of the motion;

3. Spatial distortions:

• Jitter: randomly disperses image data by warp-
ing each pixel with small offsets;

• Non-eccentricity patch: randomly extracts
patches from the image and inserts them in
random neighboring positions;

• Pixelate: combines operations of downscaling
and upscaling using nearest-neighbor interpola-
tion;

• Quantization: quantizes the image into N uni-
form levels. The thresholds are computed dy-
namically using Multi-Otsu’s method [6];

• Color block: randomly overlays homogeneous
colored squared patches onto the image;

4. Noise:

• White noise: adds Gaussian white noise to the
image;

• White noise in color component: converts the im-
age to the YCbCr color space, then adds Gaus-
sian white noise to each channel;

• Impulse noise: adds salt and pepper noise to the
image;

• Multiplicative noise: adds speckle noise to the
image;

5. Color distortions:

• Color diffusion: converts the image to the LAB-
color space, then applies Gaussian blur to each
channel;

• Color shift: randomly shifts the green chan-
nel and then blends it into the original image,
masked by the normalized gradient magnitude of
the original image;

• Color saturation 1: converts the image to the
HSV-color space and then multiplies the satura-
tion channel by a factor;

• Color saturation 2: converts the image to the
LAB-color space, then multiply each color chan-
nel by a factor;

6. Compression:

• JPEG2000: applies standard JPEG2000 com-
pression to the image;

• JPEG: applies standard JPEG compression to the
image;

7. Sharpness & contrast:

• High sharpen: sharpens the image in the LAB-
color space using unsharp masking;

• Nonlinear contrast change: calculates a nonlin-
ear tone mapping operation to manipulate the
contrast of the image;

• Linear contrast change: calculates a linear tone
mapping operation to manipulate the contrast of
the image;
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Figure S4. Visualization of the degradation types belonging to the Brightness change group for increasing levels of intensity.
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Figure S5. Visualization of the degradation types belonging to the Blur group for increasing levels of intensity.
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Figure S7. Visualization of the degradation types belonging to the Noise group for increasing levels of intensity.
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Figure S8. Visualization of the degradation types belonging to the Color distortions group for increasing levels of intensity.
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Figure S9. Visualization of the degradation types belonging to the Compression group for increasing levels of intensity.
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Figure S10. Visualization of the degradation types belonging to the Sharpness & contrast group for increasing levels of intensity.
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