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1. Extended Related Work

Interpretability using single-neuron techniques. Un-
derstanding deep neural networks (DNNs) through indi-
vidual neurons is commonly done by visualizing the re-
sponse of individual neurons such as [8-10, 14, 16], regard-
less of the interactions between individual neurons within
connected layers. Methods like [6] try to identify impor-
tant neurons while accounting for such interactions. How-
ever, their method is based on discovering critical neurons
using a multi-armed bandit technique, which suffers high
computational complexity and often leads to sub-optimal
performance [7]. In contrast, we rely on causal inference
and develop a path intervention technique to discover criti-
cal neurons.

2. Background on Causality

In this section we provide relevant information from
causality [12] which our paper has relied on.

2.1. Causal Models

Definition 1 A causal model (M) is a directed acyclic
graph (DAG) G = (V, E) where the nodes V represent the
set of variables or signals A (i.e., each node v; encodes
a signal a;). The edges & represent a set of causal mecha-
nisms or functions F that describe the associations between
signals. Precisely, each function determines the value of a
signal (a;) based on its parent nodes pa; € V.

The inner representation of neural networks has been first
observed as a DAG model in [5] (particularly, RNNs). In
this paper, the nodes of the causal graph are channels in
case of convolution layers and neurons in MLP or fully con-
nected layers (see Fig. 1). To unify our definitions, we use
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interchangeably nodes and neurons regardless of the struc-
ture of the neural layers. An activated signal a; outgoing
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(b) A neural network with one conv layer

(a) A neural network with one MLP layer
Figure 1. Directed acyclic graphs in neural networks.

from node ¢ is modulated by the weights (or the response of
the filters) that control its transmission to the next layer.

2.2. Interventions

An Intervention is defined through a mathematical op-
erator called do(z) [12]. It implies deleting certain func-
tions from the causal model, and replacing them with con-
stant value Z = z, while keeping the rest of the model
unchanged. The manipulated model is then denoted by
M., . The outcome from the action do(Z = z) is given by
Prr(yldo(z)) = Par, (y). The variables that we could in-
tervene on in a DAG model are nodes, edges or paths, while
the role of intervention (do(.)) meets one of three rules: 1)
Insertion/deletion of observations; 2) action/observation ex-
change; or 3) Insertion/deletion of actions [13].

2.3. Edge Interventions

Node interventions are very popular in causal inference
because many applications require discovering the effect of
treatments applied on input variables or features encoded in
the nodes. Path (or edge) intervention is not common, how-
ever, it can be very helpful in settings where only some com-
ponents of the signals may have direct consequences [ 7].



In our case, these components are the weights of a trained
neural network that control the flow of information between
the nodes.

Considering the subgraphs between the hidden and out-
put layers of the two DAG examples shown in Fig. 1.
Let nodes v1,wvs,v3 be the set of variables in the hid-
den layer and w4 is the output node. We define
the set of edges from the parent variables by e =
{(viva)=, (v2v4) 5, (v3va)—} C €. An edge interven-
tion is a forced assignment to instances or a subset of the
variables in e. For example, assign the value z = fw; to
the edge (v1v4)—, in the last layer, where wy is the original
weight and f is a value identified to represent the interven-
tion action.

2.4. Causal Effects

Definition 2 (Average Treatment Effect (ATE) [11]) The
average treatment (or causal) effect is one measure of the
efficacy of an intervention which compares different aspects
of the distribution Py (y|do(z)) at different levels (or types)
of treatments z1, zo. Formally, it is defined by

ATE = Elyldo(=1)] - Elyldo(=))l. (1)

where E[y|do(z,)] is the expected value. In our work, the
action do(z,) refers to edge intervention. The average of
the treatment effect is obtained over the input samples of
certain class. To find out how significant the difference of
outcome distributions under the treatments: 1) z; remove
an edge and 2) zp do nothing, we use a hypothesis testing
process taking into account the mean and variance over all
possible changes in one subgraph, controlling thereby for
the error type L.

3. Background on Evaluation Metrics for Ex-
planations

Different evaluation metrics have been proposed to mea-
sure explanations’ correctness and compare different attri-
bution methods. We focused on measures that reflect how
explanations are reliable and trustworthy concerning model
predictions. More specifically, Lipschitz estimates [1] and
IROF [15] among many developed alternatives [2—4, | 8].

Definition 3 (Local Lipschitz Estimate [1]) Given s : X C
R™ — R™ an explanation generation function which is lo-
cally difference-bounded by h : X C R™ — R¥, where h(.)
are functions mapping raw inputs to a space of interpretable
basis concepts, then stability of the explanation generation
function is defined by estimating for a given input r and
neighbourhood size €

; [[s(zi) = s(z;)ll2

L(z;) = argmax
2, €B. () 1M(xi) — h(x5) |2

For all attribution methods mentioned in this paper, we re-
placed h with the corresponding raw input z, i.e., h(z) = z,
as suggested in [1]. In our method, the explanation gener-
ation function s is given by equation eq. (3) in the main
paper. Note that we have changed some notations in [ 1] for
consistency with the content of our paper. In our implemen-
tations, the e-neighbourhood of each example x is obtained
by perturbing the inputs with white-noise B, = N (u,€),
where o and € were both set to 0.1, respectively. The Lips-
chitz Estimate was computed over 10 random runs for each
example € X.

Definition 4 (IROF []5]) Assuming a neural network f :
X — y, an explanation generation function s : X C
R™ — R™, and a segmentation method providing a set of
binary segments {m*}£_, for an input x. An importance
measure, with respect to s, is defined for each segment by
|s.m*||1/||m*||1. Given &* a perturbed version of the in-
put x, such that all the pixels in a local region defined by
the segment m* were replaced by their corresponding mean
value, then the IROF metric of an explanation method s is

defined by
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where the average is obtained over all inputs of the same
class label y. The AOC'is computed using the Trapezoidal
rule. As we mentioned in the paper, to compute the IROF,
we first sorted the regions based on their importance scores.

4. Implementation details of Algorithm 1

For estimating the causal graphs of a DNN architecture
N(L), the algorithm works in a top-down manner. Starting
from the penultimate layer | = L — 1, we select target edges
wJL ~17L directed from parent node (j) to the target class
(output). We apply interventions on each edge individually
and compute eq. (2) (in the main paper) for each input x.
We chose as default a binary intervention /5 € {0, 1}. Then,
by solving eq. (1) (in main paper), we discover the criti-
cal nodes in L — 1, and chose them to identify the edges
that we will intervene on in the subsequent lower layer. The
process is repeated until it reaches the input. For complex
architectures, such as MobileNetV2, ResNet50V2, and the
tiny ConvNext, which include layers with a large number
of neurons, we neglect 10% of the weights with norm val-
ues close to the mean in each layer. We observe that the
weights distributed near the mean value are most likely to
be similar, and intervening on all of them adds unnecessary
computational cost.

4.1. Time complexity of Algorithm 1

We measured the time needed for Algorithm 1 to com-
pute a causal graph of the target model using 100 samples



from a class of the dataset it was trained on. The experi-
ments were carried on an AMD Ryzen Threadripper PRO
3955WX 16-Cores (4.4Ghz) coupled to an Nvidia Geforce
RTX 3090. The results are displayed in Tab. 1

4.2. Visualization of LeNet’s Causal Graphs

We present an abstraction of the causal graphs gener-
ated for labels 3 and 8 in Fig. 2 and 3, respectively. To
the right are irrelevant and noisy nodes which are not part
of the graphs. In these figures, critical nodes are shown in
red and green.
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Figure 2. LeNet causal graph on MNIST for the class 3. Red
nodes refer to critical channels and neurons in conv and fully con-
nected layers, respectively.

4.3. Visualizing Explanations on Hard and Easy
Examples

In Fig. 4 and Fig. 5, we compare explanations on hard
and easy examples of MNIST and ImageNet. Hard exam-
ples refer to images containing distracting objects or con-
text. We use the causal graphs of the actual labels to gener-
ate the explanations (from the last conv layers) and qualita-
tively show why the models have made mistaks. As can be
seen in these figures, the responses of causal filters are lo-
calized at different semantic parts of the objects in the case
of easy examples. For hard examples, attributions are lo-
calized in the same region, which belongs to the distracting
class.
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Figure 3. LeNet causal graph on MNIST for the class 8. Green
nodes refer to critical channels and neurons in conv and fully con-
nected layers, respectively.

4.4. Qualitative Comparison with Attribution
Methods

In Fig. 6, we compare explanations between different
attribution methods and ours on test examples from Ima-
geNet. For our method, we show the aggregated attribu-
tions of all critical (or relevant) nodes at the last convolution
layer. As can be seen, our method provides clean and accu-
rate explanations. They are localized on the different parts
of the objects.
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Figure 4. Attributions for LeNet on easy and hard examples of the MNIST dataset.
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Figure 5. Attributions for ResNet18 on easy and hard examples of ImageNet.
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Figure 6. Comparisons between explanation methods. Baseline methods are applied on ResNet18 model trained on ImageNet.



