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Figure 1. Visual comparision of masks generated by Co-attention (Co-att) and Learned attention (Learned) approaches conditioned on the
caption for CUB and Oxford-102 datasets.

Dataset Method IS FID R% ACC IoU mIoU

CUB Learned 5.12± .01 13.37 81.5 87.5 71.7 79.8
Co-attn 5.24± .06 12.42 86.53 94.6 73.2 83.3

Oxford Learned 4.14± .03 30.39 78.47 85.4 69.9 76.5
Co-attn 4.28± .09 28.63 79.63 90.9 77.2 81.7

Table 1. Quantitative comparison of model using Co-attention based mechanism (Co-att) and that of learned attention (Learned) approach
for T2I on CUB and Oxford-102 datasets.

1.1. Learned attention mask vs. Co-attention based segmentation mask

COS-GAN uses a co-attention-based SCM predictor to estimate segmentation masks on image attended features. This
approach involves extra computation to perform a correlation of image feature and reference feature. To address this issue,
we attempt to use a learned attention approach, as in SSA-GAN [7], to predict FG-BG segmentation masks directly on image
features. However, as shown in Figure 1, this approach leads to a drop in the quality of the predicted segmentation masks.
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Therefore, it is evident that performing a correlation between simultaneously generated multiple images leads to high-quality
segmentation masks.

In Table 1, we have quantitatively compared the performance of Text-to-Image synthesis and quality of masks gener-
ated by COS-GAN using the co-attention-based SCM predictor (against the model with learned attention masks in Table
1). Co-attention approach achieves slightly better performance, which we attribute to its ability to extract high-confidence
segmentation masks used in the Spatial Conditioning blocks. Moreover, co-attention-based approach results in a significant
enhancement in the quality of the FG-BG masks produced. This improvement is because the co-attention approach considers
the overall global structure of the reference images when predicting the masks, leading to better quality in generated masks.

1.2. Sentence with Words for conditioning vectors

Proposed method uses conditioning augmentation with sentence features concatenated with noise and words to generate
initial conditioning. Previous methods have utilised only sentence and noise to generate low-resolution features using con-
volutional layers and have improved performance with cross-modal attention in deep layers [6,19,20,22]. We propose using
transformers on sentences with words to capture better global representation.

Dataset Method IS FID R% ACC IoU mIoU

CUB S+N 5.12± .06 14.19 81.76 92.3 71.5 81.6
W+S+N 5.24± .06 12.42 86.53 94.6 73.2 83.3

Oxford S+N 4.26± .05 33.20 78.36 89.5 68.1 77.1
W+S+N 4.28± .09 28.63 79.63 90.9 77.2 81.7

Table 2. Quantitative comparison of proposed model which uses Words+Sentence+Noise(W+S+N) for initial condition with the model
that uses Sentence+Noise(S+N).

To investigate the effect of generating images without using words and transformers in initial condition, we compare
our model trained with Words, Sentence and Noise with popular approaches [19, 22] that generate low-resolution features
using only sentence and noise. Table 2 compares the models quantitatively. Our model trained with Words+Sentence+Noise
outperforms model using only Sentence+Noise for initial condition. This is because the transformers used in early layers
of the network on words learn long-range dependencies and capture the global structure better than traditional up-sampling
convolutions.
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Figure 2. Examples of images generated using different conditioning in spatial blocks and their effect on generation of segmentation masks
on CUB and Oxford-102 datasets.

1.3. Decoupled Conditioning

Proposed Spatial Conditioning Blocks use separate foreground and background conditioning, allowing precise control
over mask generation. To validate this claim, we have experimented comparing our model, which utilises sentence and noise



conditioning for foreground and background (S → fg, N → bg), with two variants of conditioning: (i) using only Sentence for
Foreground (S → fg) as in SSA-GAN and (ii) using Sentence concatenated with Noise for both Foreground and Background
(S,N → fg,bg). We have evaluated the quality of generation of image and mask on the CUB and Oxford-102 datasets and
presented the results in Table 3.

Our proposed model with decoupled conditioning has achieved the best performance, allowing for focused conditioning
for different segments in the image. In contrast, the Sentence for Foreground model (S → fg) has failed to separate foreground
and background in the generated segmentation masks. Models using concatenated Sentences and Noise for both Foreground
and Background (S,N → fg,bg) have achieved similar performance as that of our model but loses control over generating
segmentation masks. Furthermore, we show examples generated by each model and its segmentation masks in Figure 2. Our
approach, with dedicated conditioning for foreground and background, prompts SCM predictors to produce segmentation
masks with a probability close to 1 for the foreground and 0 for the background. This contrasts the approach using the same
conditioning for foreground and background in SCM predictors, which only predicts segmentation to separate the features.

Dataset Conditioning IS FID R% ACC IoU mIoU

CUB
S → fg 5.04± .03 14.83 82.63 85.1 53.3 68.1

S,N → fg,bg 5.22± .08 13.98 81.33 90.9 77.1 89.1
S → fg, N → bg 5.24± .06 12.42 86.53 94.6 73.2 83.3

Oxford
S → fg 4.15± .07 30.24 77.47 87.5 64.2 74.9

S,N → fg,bg 4.18± .05 30.19 78.31 90.9 71.8 78.7
S → fg, N → bg 4.28± .09 28.63 79.63 90.9 77.2 81.7

Table 3. Quantitative comparison of proposed model which uses Sentence (S) for foreground (fg) and Noise (N) for background (bg) in
different settings for Spatial Conditioning Blocks.

1.4. Linear-SCM for Finer Predictions

In our proposed COS-GAN model, we incorporate the Linear-SCM, which employs the Spatial Co-Attention Mechanism
with the Linformer [16] technique. This technique involves the application of a linear layer to spatial dimension of the
reference features, resulting in extraction of finer segmentation masks with a minimal increase in overall computation. To
evaluate the impact of Linear-SCM on our model, we train a variant of the model that excludes Linear-SCM. In this variant,
segmentation masks required for Spatial Conditioning Blocks are generated using the last SCM prediction with bilinear
upsampling of masks.

Dataset L-SCM IS FID R% ACC IoU mIoU

CUB ✗ 5.18± .02 13.28 81.25 92.2 65.4 76.9
✓ 5.24± .06 12.42 86.53 94.6 73.2 83.3

Oxford ✗ 4.13± .03 29.52 78.71 89.1 73.7 78.1
✓ 4.28± .09 28.63 79.63 90.9 77.2 81.7

Table 4. Quantitative comparison of the proposed model which uses Linear-SCM (L-SCM) for segmentation mask predictions with the
model that does not use L-SCM.

We present a quantitative comparison of the two models in Table 4, where we observe that the model using Linear-SCM
achieves a significant improvement in performance by generating finer segmentation masks at higher resolutions. Figure 3
further supports this finding by showing that the segmentation masks generated by the Linear-SCM model are sharper and
have captured minor details, compared to the model that only uses SCM for predicting segmentation masks, which are then
used with bilinear upsampling in deeper layers. Applying a co-attention approach at high spatial resolutions enables the
model to generate more meaningful and precise segmentation masks, resulting in higher-quality generated images.
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Figure 3. Visual comparision of masks generated by our model using Linear-SCM and model with only SCM approaches conditioned on
the caption for CUB and Oxford-102 datasets.

1.5. Fixed Reduction in Linear-SCM

We have evaluated the impact of different values of k on performance of our model. Our model uses Linear-SCM to
project the spatial dimensions of reference features to a fixed-size dimension (k = 128) to reduce the computation required
for extracting the correlation matrix between the two generated features when the spatial size is greater than 32. We have
also trained another model with k = 64 to further reduce the overall computation of our model.

Dataset k-dim IS FID R% ACC IoU mIoU

CUB 64 5.09± .07 14.25 81.48 90.4 69.4 78.2
128 5.24± .06 12.42 86.53 94.6 73.2 83.3

Oxford 64 4.05± .09 30.57 78.19 89.8 70.6 77.1
128 4.28± .09 28.63 79.63 90.9 77.2 81.7

Table 5. Quantitative comparison of the proposed model, which uses fixed k = 128 reduction of spatial dimensions of reference features,
with model using k = 64.

We have compared the performance of both the models in Table 5. We have found that when the k value is small (i.e.,
k = 64), there is a noticeable drop in the quality of the generated images, suggesting that larger values of k should be used
to achieve better performance.

1.6. Generalisation of SCM and SCB blocks

To validate the efficacy of our proposed novel components, namely Spatial Co-Attention Mask (SCM) Predictor and
Spatial Conditioning Blocks (SCB), we incorporate them into an existing text-to-image approach, namely SSA-GAN [7].
The results are presented in Table 6. In the SCM block, we use varied noise vectors with the same sentence vector to
generate multiple image features. It can be observed from Table 6 that inclusion of SCM and SCB blocks into SSA-GAN
(SSA-GAN+SCM, SSA-GAN+SCB) consistently improves performance, resulting in improved FID scores for text-to-image
generation.

To evaluate the quality of the segmentation masks generated by our proposed model, we have conducted experiments on
the CUB dataset using a weakly-supervised UNet [13] model. Specifically, we have used synthetic data generated by our
SSA-GAN, COS-GAN, and ”SSA-GAN with SCM and SCB” models to train the UNet model; the standard test split of
the CUB dataset is used for evaluation. Our results show that including SCM and SCB blocks in the SSA-GAN model has
resulted in significantly improved foreground-background (FG-BG) masks of higher quality. This enhanced quality of masks
benefits the performance of the SSA-GAN model and enhances the training of other models in weakly supervised learning.



Method IS FID R% ACC IoU mIoU

SSA-GAN 5.17± .08 15.61 85.4 61.6 20.4 39.4
SSA-GAN+SCB 5.16± .06 14.72 86.11 64.6 41.8 52.3
SSA-GAN+SCM 5.12± .04 14.93 83.43 75.7 52.3 61.3
SSA-GAN+SCM+SCB 5.19± .09 13.98 85.36 85.8 66.5 72.1

COS-GAN 5.24± .06 12.42 86.53 94.6 73.2 83.3

Table 6. SSA-GAN with SCM and SCB blocks on CUB dataset for T2I image generation.

Our experiments show that the synthetic training data generated by COS-GAN outperforms SSA-GAN’s, making it a viable
option for training models in weakly-supervised settings for downstream tasks.
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Figure 4. Visual comparison of masks generated by our model and SSA-GAN [7] for CUB Dataset [17].

We have visually compared the images and masks generated by both SSA-GAN and COS-GAN in Figure 4. The mask
generated by SSA-GAN has exhibited insufficient segmentation of the foreground and background. On the other hand, our
approach leverages global reference images to predict masks, resulting in a superior ability to separate the foreground and
background. This is due to introducing a global structure in our approach, in contrast to the local prediction strategy employed
by SSA-GAN.

2. Details of the COS-GAN Architecture
In this section, we elaborate on the internal architecture details of COS-GAN. Our model is implemented using Pytorch

[12] framework. The COS-GAN architecture uses a single Generator (Section 3.1) and Discriminator (Section 3.2) for
generating images at resolution 256× 256.

3. Implementation Details
We implement the models using PyTorch framework [12]1 and optimise the network using Adam optimiser [4] with the

following hyperparameters: λ1 = 1, λ2 = 1, λ3 = 1, λ4 = 1 and λ5 = 1, batch size = 24, learning rate = 0.0002, β1 = 0.5,
and β2 = 0.999 of Adam optimiser. Spectral Normalisation [9] is used for all fully connected and convolution layers in
generator and discriminator. The model is trained for 600 epochs on CUB, Oxford-102 datasets (takes ∼5 days in 3 NVIDIA
1080Ti GPUs) and 120 epochs for the COCO dataset (takes ∼9 days in 3 NVIDIA 1080Ti GPUs). During inference, we
report results with exponential moving average weights, with a decay rate of 0.999. We obtain global image features of
sentence contrastive loss for R-precision from the discriminator network.

1The code will be released in GitHub upon acceptance.
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Figure 5. Overview of Self-Attention block with Word Reshuffle used in early layer of COS-GAN to generate low-resolution image
features. We use Group Normalization [18]. To increase the stochastic capability of our model, we add noise as in StyleGAN [3, 11].

3.1. Generator

The proposed COS-GAN Generator generates two images simultaneously and extracts segmentation masks for the gener-
ated images. Overall, Generator architecture details are described in Table 7. For generating low-resolution features in our
Generator, we use initial condition of Sentence+Noise+Words passing through a series of self-attention layers to generate
low-resolution features. The use of self-attention layers allows our model to capture a better global structure [5]. The two
low-resolution generated features are passed through a series of SCM predictors and spatial conditioning blocks for better
refinement of the image features. The final generated features are passed through a linear layer for image generation.

Table 7. Generator architecture of COS-GAN. Self Attention Block 3.1.1 are used in early layers to generate low resolutions features
capturing global structure. Residual connection is used along with the proposed SCM and Linear-SCM with spatial conditioning blocks
3.1.2.

zϵR256 ∼ N (0, I) , S ϵ R512

W ϵ R512, l (length of the sequence)

Conditional Augmentation −→ 256

Self Attention Block −→ l × 256

Self Attention Block −→ 32× 256

Self Attention Block −→ 64× 256

Self Attention Block −→ 128× 256

Self Attention Block −→ 256× 256

Reshape −→ 256× 16× 16

Residual Block −→ 256× 16× 16

Residual Conditioning −→ 256× 16× 16

Residual Conditioning −→ 256× 32× 32

Residual Conditioning −→ 128× 64× 64

Residual Conditioning −→ 128× 128× 128

Residual Conditioning −→ 64× 256× 256

Convolution Block −→ 64× 256× 256

1× 1 Convolution −→ 3× 256× 256

3.1.1 Self-Attention with Word Reshuffle

Given the initial condition (sentence concatenated with noise and words) to our network, we add positional encodings [15]
to provide notion of the position of words and sentences to the network. To increase the stochasticity of our model, we add
noise at each layer [3] similar to the proposed Styleformer [11]. As shown in Figure 5, these features are passed through a
residual block consisting of Group Normalization [18], Self Attention Layer [15], and Linear layer with ReLU [1] activation.
For increasing the sequence length, we reshape the features (l, d× r) → (l × r, d), where l is the number of tokens, d is the



channel dimension, and r is the factor for increasing the number of tokens. A linear layer follows each shuffle to increase the
channel dimension. When the features are of size 256×d, we reshape the features to d×16×16 (d is the channel dimension
and 16 are spatial sizes of the feature) to generate initial low-resolution features.

3.1.2 Residual Spatial Conditioning Blocks

Given two generated low-resolution features, we pass the features through a residual block [2] and a series of residual con-
ditioning blocks consisting of DM-Block [22] to incorporate word-based refinement, followed by 2× Spatial Conditioning
Blocks. We use Residual Spatial Conditioning Block without up-sampling (as shown in Figure 6) for low-resolution gen-
erated, followed by Residual Spatial Conditioning Block with up-sampling using Spatial Co-Attention mask (as shown in
Figure 7) for up-sampling these low-resolution features. For feature size greater than 32, we use Linear-SCM to extract
segmentation masks for usage in Spatial Conditioning Blocks (as shown in Figure 8). To reduce the overall computations,
we use shared weights for both the features.
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Figure 6. Overview of our Residual Spatial Conditioning Blocks using Spatial Co-attention Mask predictor without upsampling.
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Table 8. Discriminator architecture of COS-GAN.

RGB images 3× 256× 256, S ϵ R512, W ϵ R512

DownBlock −→ 64× 128× 128

DownBlock −→ 128× 64× 64

DownBlock −→ 256× 32× 32

DownBlock −→ 256× 16× 16

DownBlock −→ 512× 8× 8 Word Contrastive Loss

DownBlock −→ 512× 4× 4

Fully Connected(512× 4× 4) −→ 512

Linear(512) −→ 1 Linear(512) −→ 512

Adversarial Loss Sentence Contrastive Loss

3x3
Convolutions

LeakyReLU

3x3
Convolutions

LeakyReLU

1x1
Convolutions

2x2 Average
Pooling

2x2 Average
Pooling

+

Figure 9. Residual Downsampling blocks used in discriminator.

3.2. Discriminator

Unlike multi-stage approaches having multiple discriminators [19,22], we use a single discriminator to predict if an image
is real / fake and also extract features for text-alignment. The overall architecture of Discriminator is shown in Table 8. The
Discriminator takes an image of 256 x 256 spatial resolution and passes through a series of residual downsampling blocks
(DownBlocks - Figure 9). Our Discriminator has two final outputs, one for adversarial loss logit predictions and the other for
global feature predictor for sentence contrastive loss. When feature’s spatial size is 16 x 16, these features are provided for
word contrastive loss.

4. More Qualitative Results
We provide additional qualitative results of our model on CUB [17] dataset in Figures 10, 11 and 12 compared with DF-

GAN [14], on Oxford-102 [10] dataset in Figures 13, 14 and 15 compared with HDGAN [21], and on MS-COCO [8] dataset
in Figures 16, 17 and 17 compared with AttnGAN [19]. We also provide visualisation for generated segmentation masks for
all SCM and Linear-SCM in Figures 19, 20 and 21 for CUB, Oxford-102 and COCO datasets respectively.
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Figure 10. Two images generated simultaneously and their segmentation masks by COS-GAN (ours) on CUB dataset [17] and compared
with those of DF-GAN [14].
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Figure 11. Two images generated simultaneously and their segmentation masks by COS-GAN (ours) on CUB dataset [17] and compared
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Figure 13. Two images generated simultaneously and their segmentation masks by COS-GAN (ours) on Oxford-102 dataset [10] and
compared with those of HDGAN [14].
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Figure 14. Two images generated simultaneously and their segmentation masks by COS-GAN (ours) on Oxford-102 dataset [10] and
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Figure 15. Two images generated simultaneously and their segmentation masks by COS-GAN (ours) on Oxford-102 dataset [10] and
compared with those of HDGAN [14].



A bunch of little
boats on the

water.

A pepperoni
pizza in the
shape of a

home.

Someone
windsurfing
with a cargo
boat in the

background.

A kid rides on
some sort of a

ski track
through the

snow.

Dog running
with object in
his mouth that
he is ripping

There is a man
sitting with two

boys.

A gang of
bikers riding

down a street.

Real 
ImageCaption AttnGAN 

Image
COSGAN
Image-1

COSGAN
Mask-1

COSGAN
Image-2

COSGAN
Mask-2

Figure 16. Two images generated simultaneously and their segmentation masks by COS-GAN (ours) on COCO dataset [8] and compared
with those of AttnGAN [19].
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Figure 17. Two images generated simultaneously and their segmentation masks by COS-GAN (ours) on COCO dataset [8] and compared
with those of AttnGAN [19].
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Figure 18. Two images generated simultaneously and their segmentation masks by COS-GAN (ours) on COCO dataset [8] and compared
with those of AttnGAN [19].



the bird is dark
black in color

and has an
elongated body

shape.

ImageCaption COS-GAN SCM-1 SCM-2 SCM-3 LSCM-1
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grey head, chest

and belly with
black wings and

tail

this bird is black
in color with a

very sharp beak,
and black eye

rings

this bird is
mostly brown

with black
speckles, with a
tiny sharp bill.

the gray bird has
a black eye
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belly, and dark
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this bird has a
white eyebrow

and black
streaks running
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breast and belly.

a small plump
bird with a white
belly and brown

dots.

LSCM-2

Figure 19. Segmentation masks generated by all SCM and Linear-SCM blocks for the generated images on CUB dataset.



this flower is five
reddish orange
petals around

yellow stamen.
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red and bunched
together

this is an orange
flower with many
petals and yellow

stamen at the
center.

the pretty flower
has lots of

almost orange
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on top of each

other.
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Figure 20. Segmentation masks generated by all SCM and Linear-SCM blocks for the generated images on CUB dataset.



A man stands
with two children
with stuffed toys.
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A man holds an
object as he
stands in the

sand

a group of
people on surf
board ride on
some snow

A livingroom
with blue

couches around
a coffee table.

a number of
people wit ha

sheep in a city
street

A crowd of
people in an

elaborate town
square.

There is building
which looks like
a prison on this

island.

LSCM-2

Figure 21. Segmentation masks generated by all SCM and Linear-SCM blocks for the generated images on COCO dataset.
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