
OptFlow: Fast Optimization-based Scene Flow Estimation without Supervision
Supplementary Material

Rahul Ahuja Chris Baker Wilko Schwarting
ISEE AI

{rahulahuja, chrisbaker, wilko}@isee.ai

Figure 1. Performance comparison of our algorithm and NSFP
on the KITTI dataset for varying point cloud densities com-
puted as a whole point cloud together.

1. Faster OptFlow in Batches

The KNN search between the source and target point
clouds within the fit function loss constitutes a significant
bottleneck, increasing the inference time of our model.
As the number of points grows, so does the search space,
thereby leading to an extended time for the KNN operation
to find the best correspondences. Importantly, as depicted
in Figure 1 from above, our model’s performance regarding
Acc5 tends to level off around 8k-10k points. As a result
of this observation, we chose to process our point clouds
in parallel batches of 8192 points. This approach involves
randomly sampling sets of 8192 points, batching them to-
gether, and running our scene flow estimation algorithm on
them in parallel. Upon completion, we collate the results for
final evaluation. By limiting the search space for each KNN
operation, this method substantially cuts down on process-
ing time while preserving the accuracy of our scene flow es-
timates. The revised correlation between accuracy and time,
adjusted for different point cloud densities, is presented in

Figure 2. Performance comparison of our algorithm and NSFP
on the KITTI dataset for varying point cloud densities com-
puted in parallel batches of 8192 points. This shows we get
around 7x speedup over NSFP [8] as the point cloud density
increases.

Figure 2. As indicated by the figure, this strategy allows our
model to operate seven times faster than NSFP [8], signifi-
cantly enhancing its efficiency.

2. Real-Time OptFlow

The original implementation of OptFlow typically takes
around 1.5 to 2 seconds to converge. However, its suitabil-
ity for real-time applications depends on the specific use
case, accuracy requirements, and End Point Error (EPE)
constraints. To explore its real-time potential, we conducted
an experiment using sequential data from the NuScenes
dataset [3], with a time interval of 0.2 seconds between
frames.

In this experiment, we initially processed the first two
consecutive point clouds, running our optimization algo-
rithm for a full 500 iterations. We then initialized the flow
values for the next pair of point clouds using nearest neigh-

1

Figure 3. Failure case due to missing points: The source point cloud is represented in red, the target point cloud in green, and the warped
point cloud in blue. We can observe that the flow estimates for the static points are incorrect. This is due to the lack of corresponding points,
which prevents our model from forming accurate scene flow estimations for these points. Despite this, the results are not significantly
compromised thanks to our Adaptive Distance Threshold feature. This component reduces the limit for finding correspondences, thereby
diminishing the likelihood of numerous false positives.

bor matches from the previously estimated flows. In dy-
namic scenes, scene flow vectors for objects in consecutive
frames tend to be similar or exhibit slight changes if objects
are in motion. This allows us to reduce the number of iter-
ations required for subsequent runs while maintaining good
accuracy.

For the consecutive runs, we executed our algorithm for
just 30-40 iterations, taking approximately 0.17-0.2 sec-
onds to complete. Importantly, we retained the flow vec-
tors and the ICP transformation function from the previ-
ous run. Although we lacked ground truth flow annotations
for these samples, we devised an evaluation metric called
End Point Error Difference (EPED), calculated as follows:
EPED = EPE(flow500, f low30). Here, flow500 rep-
resents a run with 500 iterations, while flow30 represents
flow values obtained from 30 iterations.

Remarkably, our experiments yielded an EPED value
of only 0.053 meters. This implies that by reducing the
number of iterations and achieving an inference speed of
200 milliseconds for OptFlow, we only compromised 0.05
meters of EPE accuracy, making it a viable option for real-

time applications.
This real-time OptFlow optimization will be further ex-

plored in our future work.

3. Failure Cases

Our method, which relies on the nearest neighbor search
in the fit function, can potentially encounter failure cases.
Specifically, this can occur when no correspondence exists
between a point in the source point cloud and another point
in the target point cloud. Under such circumstances, the loss
function may falsely identify a match, leading to false pos-
itives. This scenario is frequently encountered with static
background points such as trees, poles, and occluded ob-
jects as these often present missing points in subsequent
point clouds. The problem is amplified when we evaluate
using point clouds of 2048 or 8192 points, given that points
are randomly sampled. When the point cloud is sparse, this
may lead to the generation of false positives. Nevertheless,
as point density increases, the risk of this failure decreases,
enhancing our evaluation results.

Figure 4. Impact of the bi-directional Fit Function: The source point cloud is depicted in red, the target point cloud in green, and the
warped point cloud in blue. On the left, we observe incorrect scene flow estimates that do not align with the ground truth flow values.
In the center image, the assigned correspondences are inaccurate, resulting in a misplaced warped point cloud. On the right, we see the
dramatic improvement achieved by applying the bi-directional fit function. The correspondences are significantly corrected and closely
match the target point cloud.

Figure 3 exemplifies the impact of these missing points
using a scene from the Argoverse dataset. In the color-
coded map, our scene flow estimations for the area marked
in red are observed to deviate from the ground truth flows.
Upon closer examination of these points, we find that cor-
responding points are absent in the target point cloud, as
shown by the absence of green points. The estimated flows
for these points are visually represented.

Despite the flaws in our flow angles, the flow estimates
are not excessively erroneous. This is attributable to the
adaptive distance threshold. In the limitations highlighted
by works such as [13] and [7], these warped point clouds
(PT−1+F) would have shrunk towards the nearest available
point. However, in our case, the adaptive distance threshold
curtails the impact of false positives, hence yielding better
estimates.

3.1. FlyingThings3D

Continuing with the discussion of challenging scenarios,
the FlyingThings3D dataset presents an interesting case due
to its frequent occlusions and partial visibility. It’s worth
noting that our algorithm exhibits lower performance in
terms of End Point Error compared to learning-based meth-
ods that were specifically trained on the FlyingThings3D
dataset. As previously explained, our reliance on nearest
neighbor loss means that in cases of occlusions and limited
visibility, the assigned nearest correspondence may not be

Figure 5. FlyingThings3D failure This is a part of an object from
a scene in the FlyingThings3D dataset. The red points denote
the source point cloud, while the green points represent the tar-
get point cloud. Additionally, the blue points illustrate the source
point cloud after integrating estimated flows. A notable observa-
tion is that the source point cloud contains fewer points, indicating
partial visibility compared to the target point cloud. Consequently,
our algorithm estimates scene flow for the reduced set of points in
the source cloud, leading to missing flow estimations for numerous
points in the target point cloud. This disparity in flow estimations
results in higher End Point Error (EPE) values and lower accuracy
scores in such scenarios.

correct. An example provided below illustrates a situation
where the source point cloud, when combined with the es-
timated flow, misses the target point cloud.

Change in visibility is a common challenge faced by
optimization-based methods. However, despite these diffi-
culties, our approach still manages to achieve a remarkable
12% improvement in Acc5 compared to the current state-of-
the-art optimization-based method [8]. This demonstrates
the significant contributions our methodology brings to the
field, even in demanding scenarios.

4. Bi-directional fit function
As outlined in our primary submission, we apply our fit

function 1 in a bi-directional manner.

Efit =

n1∑
i=1

||Tpi + fi − qavgi
||22. (1)

This approach mimics the effect of the Chamfer Distance
[5]. This original metric is a nearest neighbor loss function,
which identifies one nearest neighbor for each point in the
source point cloud PT−1 in relation to the target point cloud
PT , and subsequently calculates the mean squared differ-
ence between the two. This process is then reciprocated,
with the source serving as the target and vice versa. The
mean of these two error terms constitutes the Chamfer loss.

In line with this, our approach initially designates PT−1

as the source and PT as the target. In the second round,
these roles are reversed with PT serving as the source and
PT−1 as the target point cloud. The corresponding qavg
is determined through the locally correlated weight matrix
applied to each target point cloud.

Table 2 presents the performance of our model when us-
ing the bi-directional fit function compared to a unidirec-
tional application. As the results indicate, the bidirectional
application of our fit function yields notably improved per-
formance.

In figure 4, we also depict how the flow estimates fail
without the bi-directional fit function.

Experiment EPE ↓ %5 ↑ %10 ↑ θϵ

(a) Bi-directional fit loss 0.049 88.25 95.1 0.13
(b) Non Bi-directional fit loss 0.073 85.26 92.7 0.16

Table 2. Effect of Bi-directional fit function on KITTI using
2048 points.

5. Implementation Details
In this section, we share the hyperparameters that re-

sulted in the outcomes presented in our paper. We employed
RayTune [9] and Hyperopt [2] for an extensive hyperpa-
rameter search. Throughout our experiment, we maintained
Krigid at a constant value of 50, as this yielded the most
optimal results and was recommended in [13].

Figure 6. Left: Loss curve vs iterations, Right: EPE vs iterations

The parameters αrigid and Klocal, which are used in the
nearest neighbor search for the local target correlation ma-
trix, played a vital role in achieving the desired outcomes.
Table 3 outlines the hyperparameters applied in our experi-
ment.

We advise conducting your own hyperparameter search
to identify the most suitable solution for your specific sce-
nario.

Dataset Klocal αrigid

(a) FlyingThings3D [11] 12 14.2
(b) NuScenes [3] 20 19.6
(c) KITTI [6] 15 9.57
(d) Argoverse [4] 15 19.2

Table 3. Hyperparameters used for each dataset.

6. Visualizations
6.1. Comparison of OptFlow with Baseline

In Figure 7, we contrast our proposed OptFlow method
with the baseline method, Graph Prior [13]. It becomes ev-
ident that our flow estimates significantly outperform those
produced by Graph Prior, particularly in correctly predict-
ing flow values for static background points. This com-
parison clearly demonstrates the advantages of OptFlow in
terms of accuracy in scene flow prediction.

6.2. Effect of integrated ego-motion compensation

In many state-of-the-art scene flow estimation algo-
rithms, the primary focus is typically on dynamic objects,
with static objects or points often receiving less attention.
This approach may work satisfactorily for dense datasets
such as KITTI, but it can result in a high likelihood of false
positives when dealing with sparse datasets.

The motivation for our research to incorporate an inte-
grated ego-motion compensation was to mitigate these false
positives. By aligning the static points effectively, our algo-
rithm is better positioned to accurately identify the scene
flow estimates of dynamic objects.

As depicted in Figure 8, the inclusion of an integrated

Figure 7. Scene Flow Visualization of Graph Prior [13] Method
vs. OptFlow (Ours): Our method’s estimated scene flow, partic-
ularly in the background, presents a more accurate representation
compared to the Graph Prior method. The ground truth scene flow
aligns more closely with our estimation.

ego-motion compensation transformation function signifi-
cantly reduces false positives and yields estimates that are
more closely aligned with the ground truth flow values.

6.3. Tough Example: Ego vehicle surrounded by
dynamic objects

In figure 9, we provide an enlarged view of Figure 3 from
the main paper. This visualization illustrates a challenging
scenario where the ego vehicle is navigating a turn and is
surrounded by numerous dynamic objects. Remarkably, our
algorithm continues to deliver excellent performance even
in these complex conditions.

Figure 8. Effect of integrated ego-motion compensation within
our objective function: The transformation function aids in more
accurate point cloud alignment, significantly reducing the likeli-
hood of false positives, as demonstrated above.

References
[1] Brian Amberg, Sami Romdhani, and Thomas Vetter. Opti-

mal step nonrigid icp algorithms for surface registration. 06
2007.

[2] James Bergstra, Brent Komer, Chris Eliasmith, Dan Yamins,
and David D Cox. Hyperopt: a python library for model
selection and hyperparameter optimization. Computational
Science Discovery, 8(1):014008, 2015. 4

[3] Holger Caesar, Varun Bankiti, Alex H Lang, Sourabh Vora,
Venice Erin Liong, Qiang Xu, Anush Krishnan, Yu Pan, Gi-
ancarlo Baldan, and Oscar Beijbom. nuscenes: A multi-
modal dataset for autonomous driving. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 11621–11631, 2020. 1, 4

[4] Ming-Fang Chang, John Lambert, Patsorn Sangkloy, Jag-
jeet Singh, Slawomir Bak, Andrew Hartnett, De Wang, Peter
Carr, Simon Lucey, Deva Ramanan, et al. Argoverse: 3d
tracking and forecasting with rich maps. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 8748–8757, 2019. 4

[5] Haoqiang Fan, Hao Su, and Leonidas J Guibas. A point set
generation network for 3d object reconstruction from a single
image. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 605–613, 2017. 4

[6] Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel
Urtasun. Vision meets robotics: The kitti dataset. The Inter-
national Journal of Robotics Research, 32(11):1231–1237,
2013. 4

[7] Itai Lang, Dror Aiger, Forrester Cole, Shai Avidan, and
Michael Rubinstein. SCOOP: Self-Supervised Correspon-
dence and Optimization-Based Scene Flow. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), 2023. 3

Figure 9. Predicting Scene Flow in a Dynamic Scene: This visualization depicts the estimated scene flow surrounding an ego vehicle.
The left image uses color gradients to indicate flow velocity and direction. Similar color values depict similarity in flow values. The image
on the right depicts estimated flow vectors (blue) onto the actual target point cloud data (green). The proximity of the predicted and target
points demonstrates the accuracy of the scene flow model in this busy urban setting.

[8] Xueqian Li, Jhony Kaesemodel Pontes, and Simon Lucey.
Neural scene flow prior. Advances in Neural Information
Processing Systems, 34:7838–7851, 2021. 1, 4

[9] Richard Liaw, Eric Liang, Robert Nishihara, Philipp Moritz,
Joseph E Gonzalez, and Ion Stoica. Tune: A research plat-
form for distributed model selection and training. arXiv
preprint arXiv:1807.05118, 2018. 4

[10] Xingyu Liu, Charles R. Qi, and Leonidas J. Guibas.
Flownet3d: Learning scene flow in 3d point clouds, 2019.

[11] Nikolaus Mayer, Eddy Ilg, Philip Hausser, Philipp Fischer,
Daniel Cremers, Alexey Dosovitskiy, and Thomas Brox. A
large dataset to train convolutional networks for disparity,
optical flow, and scene flow estimation. In Proceedings of
the IEEE conference on computer vision and pattern recog-
nition, pages 4040–4048, 2016. 4

[12] Himangi Mittal, Brian Okorn, and David Held. Just go with
the flow: Self-supervised scene flow estimation. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), June 2020.

[13] Jhony Kaesemodel Pontes, James Hays, and Simon Lucey.
Scene flow from point clouds with or without learning. In
2020 international conference on 3D vision (3DV), pages
261–270. IEEE, 2020. 3, 4, 5

[14] Wenxuan Wu, Zhi Yuan Wang, Zhuwen Li, Wei Liu, and Li
Fuxin. Pointpwc-net: Cost volume on point clouds for (self-)
supervised scene flow estimation. In European Conference
on Computer Vision, pages 88–107. Springer, 2020.

