OptFlow: Fast Optimization-based Scene Flow Estimation without Supervision
Supplementary Material

Rahul Ahuja Chris Baker Wilko Schwarting
ISEE AI
{rahulahuja, chrisbaker, wilko}@isee.ai

Figure 1. Performance comparison of our algorithm and NSFP on the KITTI dataset for varying point cloud densities computed as a whole point cloud together.

1. Faster OptFlow in Batches

The KNN search between the source and target point clouds within the fit function loss constitutes a significant bottleneck, increasing the inference time of our model. As the number of points grows, so does the search space, thereby leading to an extended time for the KNN operation to find the best correspondences. Importantly, as depicted in Figure 1 from above, our model’s performance regarding Acc_5 tends to level off around 8k-10k points. As a result of this observation, we chose to process our point clouds in parallel batches of 8192 points. This approach involves randomly sampling sets of 8192 points, batching them together, and running our scene flow estimation algorithm on them in parallel. Upon completion, we collate the results for final evaluation. By limiting the search space for each KNN operation, this method substantially cuts down on processing time while preserving the accuracy of our scene flow estimates. The revised correlation between accuracy and time, adjusted for different point cloud densities, is presented in Figure 2.

Figure 2. Performance comparison of our algorithm and NSFP on the KITTI dataset for varying point cloud densities computed in parallel batches of 8192 points. This shows we get around 7x speedup over NSFP [8] as the point cloud density increases.

Figure 2. As indicated by the figure, this strategy allows our model to operate seven times faster than NSFP [8], significantly enhancing its efficiency.

2. Real-Time OptFlow

The original implementation of OptFlow typically takes around 1.5 to 2 seconds to converge. However, its suitability for real-time applications depends on the specific use case, accuracy requirements, and End Point Error (EPE) constraints. To explore its real-time potential, we conducted an experiment using sequential data from the NuScenes dataset [3], with a time interval of 0.2 seconds between frames.

In this experiment, we initially processed the first two consecutive point clouds, running our optimization algorithm for a full 500 iterations. We then initialized the flow values for the next pair of point clouds using nearest neigh-
Figure 3. **Failure case due to missing points**: The source point cloud is represented in red, the target point cloud in green, and the warped point cloud in blue. We can observe that the flow estimates for the static points are incorrect. This is due to the lack of corresponding points, which prevents our model from forming accurate scene flow estimations for these points. Despite this, the results are not significantly compromised thanks to our Adaptive Distance Threshold feature. This component reduces the limit for finding correspondences, thereby diminishing the likelihood of numerous false positives.

For the consecutive runs, we executed our algorithm for just 30-40 iterations, taking approximately 0.17-0.2 seconds to complete. Importantly, we retained the flow vectors and the ICP transformation function from the previous run. Although we lacked ground truth flow annotations for these samples, we devised an evaluation metric called End Point Error Difference (EPED), calculated as follows: $EPED = EPE(flow_{500}, flow_{30})$. Here, $flow_{500}$ represents a run with 500 iterations, while $flow_{30}$ represents flow values obtained from 30 iterations.

Remarkably, our experiments yielded an $EPED$ value of only 0.053 meters. This implies that by reducing the number of iterations and achieving an inference speed of 200 milliseconds for OptFlow, we only compromised 0.05 meters of EPE accuracy, making it a viable option for real-time applications.

This real-time OptFlow optimization will be further explored in our future work.

3. Failure Cases

Our method, which relies on the nearest neighbor search in the fit function, can potentially encounter failure cases. Specifically, this can occur when no correspondence exists between a point in the source point cloud and another point in the target point cloud. Under such circumstances, the loss function may falsely identify a match, leading to false positives. This scenario is frequently encountered with static background points such as trees, poles, and occluded objects as these often present missing points in subsequent point clouds. The problem is amplified when we evaluate using point clouds of 2048 or 8192 points, given that points are randomly sampled. When the point cloud is sparse, this may lead to the generation of false positives. Nevertheless, as point density increases, the risk of this failure decreases, enhancing our evaluation results.
Figure 4. **Impact of the bi-directional Fit Function:** The source point cloud is depicted in red, the target point cloud in green, and the warped point cloud in blue. On the left, we observe incorrect scene flow estimates that do not align with the ground truth flow values. In the center image, the assigned correspondences are inaccurate, resulting in a misplaced warped point cloud. On the right, we see the dramatic improvement achieved by applying the bi-directional fit function. The correspondences are significantly corrected and closely match the target point cloud.

Figure 3 exemplifies the impact of these missing points using a scene from the Argoverse dataset. In the color-coded map, our scene flow estimations for the area marked in red are observed to deviate from the ground truth flows. Upon closer examination of these points, we find that corresponding points are absent in the target point cloud, as shown by the absence of green points. The estimated flows for these points are visually represented.

Despite the flaws in our flow angles, the flow estimates are not excessively erroneous. This is attributable to the adaptive distance threshold. In the limitations highlighted by works such as [13] and [7], these warped point clouds ($P_{T_{-1}} + F$) would have shrunk towards the nearest available point. However, in our case, the adaptive distance threshold curtails the impact of false positives, hence yielding better estimates.

3.1. FlyingThings3D

Continuing with the discussion of challenging scenarios, the FlyingThings3D dataset presents an interesting case due to its frequent occlusions and partial visibility. It’s worth noting that our algorithm exhibits lower performance in terms of End Point Error compared to learning-based methods that were specifically trained on the FlyingThings3D dataset. As previously explained, our reliance on nearest neighbor loss means that in cases of occlusions and limited visibility, the assigned nearest correspondence may not be correct. An example provided below illustrates a situation where the source point cloud, when combined with the estimated flow, misses the target point cloud.
Change in visibility is a common challenge faced by optimization-based methods. However, despite these difficulties, our approach still manages to achieve a remarkable 12% improvement in Acc_5 compared to the current state-of-the-art optimization-based method [8]. This demonstrates the significant contributions our methodology brings to the field, even in demanding scenarios.

4. Bi-directional fit function

As outlined in our primary submission, we apply our fit function 1 in a bi-directional manner.

$$E_{fit} = \sum_{i=1}^{n} ||Tp_i + f_i - q_{avg}||^2_2.$$ \hspace{1cm} (1)

This approach mimics the effect of the Chamfer Distance [5]. This original metric is a nearest neighbor loss function, which identifies one nearest neighbor for each point in the source point cloud P_{T-1} in relation to the target point cloud P_T, and subsequently calculates the mean squared difference between the two. This process is then reciprocated, with the source serving as the target and vice versa. The mean of these two error terms constitutes the Chamfer loss.

In line with this, our approach initially designates P_{T-1} as the source and P_T as the target. In the second round, these roles are reversed with P_T serving as the source and P_{T-1} as the target point cloud. The corresponding q_{avg} is determined through the locally correlated weight matrix applied to each target point cloud.

Table 2 presents the performance of our model when using the bi-directional fit function compared to a unidirectional application. As the results indicate, the bidirectional application of our fit function yields notably improved performance.

In figure 4, we also depict how the flow estimates fail without the bi-directional fit function.

<table>
<thead>
<tr>
<th>Experiment</th>
<th>EPE</th>
<th>%5↑</th>
<th>%10↑</th>
<th>θx</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) Bi-directional fit loss</td>
<td>0.049</td>
<td>88.25</td>
<td>95.1</td>
<td>0.13</td>
</tr>
<tr>
<td>(b) Non Bi-directional fit loss</td>
<td>0.073</td>
<td>85.26</td>
<td>92.7</td>
<td>0.16</td>
</tr>
</tbody>
</table>

Table 2. Effect of Bi-directional fit function on KITTI using 2048 points.

5. Implementation Details

In this section, we share the hyperparameters that resulted in the outcomes presented in our paper. We employed RayTune [9] and Hyperopt [2] for an extensive hyperparameter search. Throughout our experiment, we maintained K_{rigid} at a constant value of 50, as this yielded the most optimal results and was recommended in [13].

6. Visualizations

6.1. Comparison of OptFlow with Baseline

In Figure 7, we contrast our proposed OptFlow method with the baseline method, Graph Prior [13]. It becomes evident that our flow estimates significantly outperform those produced by Graph Prior, particularly in correctly predicting flow values for static background points. This comparison clearly demonstrates the advantages of OptFlow in terms of accuracy in scene flow prediction.

6.2. Effect of integrated ego-motion compensation

In many state-of-the-art scene flow estimation algorithms, the primary focus is typically on dynamic objects, with static objects or points often receiving less attention. This approach may work satisfactorily for dense datasets such as KITTI, but it can result in a high likelihood of false positives when dealing with sparse datasets.

The motivation for our research to incorporate an integrated ego-motion compensation was to mitigate these false positives. By aligning the static points effectively, our algorithm is better positioned to accurately identify the scene flow estimates of dynamic objects.

As depicted in Figure 8, the inclusion of an integrated

![Figure 6. Left: Loss curve vs iterations. Right: EPE vs iterations](image-url)
ego-motion compensation transformation function significantly reduces false positives and yields estimates that are more closely aligned with the ground truth flow values.

6.3. Tough Example: Ego vehicle surrounded by dynamic objects

In figure 9, we provide an enlarged view of Figure 3 from the main paper. This visualization illustrates a challenging scenario where the ego vehicle is navigating a turn and is surrounded by numerous dynamic objects. Remarkably, our algorithm continues to deliver excellent performance even in these complex conditions.

References

Figure 9. **Predicting Scene Flow in a Dynamic Scene**: This visualization depicts the estimated scene flow surrounding an ego vehicle. The left image uses color gradients to indicate flow velocity and direction. Similar color values depict similarity in flow values. The image on the right depicts estimated flow vectors (blue) onto the actual target point cloud data (green). The proximity of the predicted and target points demonstrates the accuracy of the scene flow model in this busy urban setting.

