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A. Experimental Setup Details

Figure. 1 illustrates a decentralized setup with 5 agents
connected in a ring topology.
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Figure 1. Decentralized training setup with 5 agents connected in
aring topology. Each agent has its own private dataset and a local
model.

For the decentralized setup, we use an undirected ring,
undirected Dyck graph, and undirected torus graph topolo-
gies with a uniform mixing matrix. The undirected ring
topology for any graph size has 3 peers per agent includ-
ing itself and each edge has a weight of % The undirected
Dyck topology with 32 agents has 4 peers per agent includ-
ing itself and each edge has a weight of i. The undirected
torus topology with 32 agents has 5 peers per agent includ-
ing itself and each edge has a weight of % All our ex-
periments were conducted on a system with an NVIDIA
A40 card with 4 GPUs. We report the test accuracy of
the consensus model averaged over three randomly cho-
sen seeds. The consensus model is obtained by averag-
ing the model parameters across all agents using an all-
reduce mechanism at the end of the training. The source
code is available at https://github.com/aparna—
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A.1. Datasets

In this section, we give a brief description of the datasets
used in our experiments. We use a diverse set of datasets
each originating from a different distribution of images to
show the generalizability of the proposed techniques.

CIFAR-10: CIFAR-10 [3] is an image classification
dataset with 10 classes. The image samples are colored (3
input channels) and have a resolution of 32 x 32. There are
50,000 training samples with 5000 samples per class and
10, 000 test samples with 1000 samples per class.

CIFAR-100: CIFAR-100 [3] is an image classification
dataset with 100 classes. The image samples are colored
(3 input channels) and have a resolution of 32 x 32. There
are 50, 000 training samples with 500 samples per class and
10, 000 test samples with 100 samples per class. CIFAR-
100 classification is a harder task compared to CIFAR-10 as
it has 100 classes with very few samples per class to learn
from.

Fashion MNIST: Fashion MNIST [6] is an image clas-
sification dataset with 10 classes. The image samples are in
greyscale (1 input channel) and have a resolution of 28 x 28.
There are 60,000 training samples with 6000 samples per
class and 10, 000 test samples with 1000 samples per class.

Imagenette: Imagenette [2] is a 10-class subset of the
ImageNet dataset. The image samples are colored (3 input
channels) and have a resolution of 224 x 224. There are
9469 training samples with roughly 950 samples per class
and 3925 test samples.

ImageNet: ImageNet dataset spans 1000 object classes
and contains 1,281,167 training images, 50,000 validation
images, and 100,000 test images. The image samples are
colored (3 input channels) and have a resolution of 224 x
224.

A.2. Network Architecture

We replace ReLU+BatchNorm layers of all the model
architectures with EvoNorm-SO0 as it was shown to be better
suited for decentralized learning over non-IID distributions.
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(c) Data-Variant Contrastive Loss (Lg,,)

Figure 2. Comparing various training loss terms for IID (dashed lines) and non-IID (solid lines) partitions of CIFAR-10 trained on ResNet-
20 over a ring topology of 16 agents. We use o = 10 for IID data and o = 0.01 for non-1ID data.

ResNet-20: For ResNet-20 [1], we use the standard
architecture with 0.27M trainable parameters except that
BatchNorm+ReLU layers are replaced by EvoNorm-S0.

ResNet-18: For ResNet-18 [1], we use the standard
architecture with 110/ trainable parameters except that
BatchNorm+ReLU layers are replaced by EvoNorm-S0.

LeNet-5: For LeNet-5 [4], we use the standard architec-
ture with 61, 706 trainable parameters.

MobileNet-V2: We use the the standard MobileNet-V2
[5] architecture used for CIFAR dataset with 2.3M param-
eters except that BatchNorm+ReL U layers are replaced by
EvoNorm-S0.

A.3. Hyper-parameters

This section presents a detailed description of the hyper-
parameters used in our experiments. All the experiments
were run for three randomly chosen seeds. We decay the
step size by 10x after 50% and 75% of the training, un-
less mentioned otherwise. For all the experiments, we have
used a momentum of 0.9 with Nesterov, a weight decay of
0.0001, and a mini-batch size of 32 per agent.

Table 1. The value of A,,, A, used for training CIFAR-10 with
non-IID data using ResNet-20 architecture presented in Table 1

Agents (n) Method ResNet-20
a=0.1 a=0.01
16 CCL (ours) 0.01,0.0 0.01,0.01
32 CCL (ours) 0.1,0.1 0.1,0.1

Hyper-parameters for experiments in Table 1: All the
experiments have the stopping criteria set to 200 epochs.
The initial learning rate is set to 0.1. We decay the step
size by 10x in multiple steps at 100" and 150" epoch.
Table 1 presents values of the scaling factor A, Az used in
the experiments.

Table 2. The value of A, A\, used for training various datasets
with CCL (presented in Table 2).

Dataset a=0.1 a=0.01
Fashion MNIST  0.001,0.001 0.01,0.01
CIFAR-100 0.1,0.1 0.1,0.1
Imagenette 0.001, 0.001 1.0,1.0

Hyper-parameters for experiments in Table 2: All the
experiments for CIFAR-100 and ImageNette have the stop-
ping criteria set to 100 epochs and Fashion MNIST exper-
iments have a stopping criteria of 50 epochs. The initial
learning rate is set to 0.1 for CIFAR-100 and 0.01 for Fash-
ion MNIST and Imagenette. Table 2 presents values of the
scaling factor \,,,, Aq used in the experiments.

Hyper-parameters for experiments in Table 3: All the
experiments have the stopping criteria set to 200 epochs.
The initial learning rate is set to 0.1. We decay the step
size by 10x in multiple steps at 100" and 150" epoch.
Table 3 presents values of the scaling factor \,,,, A\; used in
the experiments. All the experiments on the Dyck and Torus
graph use an averaging rate of 0.9 (instead of the default
value of 1.0).

Table 3. The value of \,,, A, used for training CIFAR-10 datasets
with CCL on ResNet-20 over various graph topologies (presented
in Table 3).

Graph a=0.1 a=0.01
Dyck (32 agents)  0.1,0.1 0.1,0.1
Torus (32 agents)  0.1,0.1 0.1,0.1




B. Additional Results

Figure. 2 measures the different training losses for both
IID and non-IID distribution with o« = 0.01 of the CIFAR-
10 dataset trained on ResNet-20 architecture. We observe
that the training cross-entropy loss (Fig. 2a) for IID and
non-IID data converges to zero even though there is a
huge gap in the validation loss. However, Fig. 2b shows
that the model-variation contrastive loss for the baseline
is much higher in non-IID settings compared to IID and
hence is a good measure of data-heterogeneity. On the
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Figure 3. Test accuracy for the CIFAR-10 dataset trained on
ResNet architecture with varying depth over 16-agent ring topol-
ogy with a skew of o = 0.01.

other hand, data-variant contrastive loss measures the vari-
ation in class representations across agents. Fig. 2c shows
that this variation is relatively stable throughout the train-
ing process for QG-DSGDm-N (baseline) with IID Data.
However, for QG-DSGDm-N with the non-IID setting, a
significant increase in the variation of class representations
across agents is evident. The proposed CCL framework ex-
plicitly minimizes the model-variant and data-variant con-
trastive loss. Fig. 2b shows that the CCL helps in reducing
the model variance compared to QG-DSGDm-N. Fig. 2¢
shows that CCL has a stable variation in class representa-
tions across agents compared to QG-DSGDm-N. This re-
sults in better performance of the proposed Cross-feature
Contrastive Loss for decentralized learning on heteroge-
neous data. Further, we evaluate the proposed CCL on the
varying depth of ResNet architecture with ring topology of
16 agents as shown in Figure. 3. We observe that the pro-
posed CCL framework consistently outperforms the QG-
DSGDm-N baseline over varying graph sizes by an average
improvement of 2.68%.
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