OVeNet: Offset Vector Network for Semantic Segmentation
- Supplementary Material -

1. Network Instantiation

OVeNet follows the same general architecture as [3]. Since it is built on HRNet [3], our network contains four stages and two heads, as shown in Table 1. The branch occurs on the 4th stage. The semantic head of our model is constructed from modularized blocks, which are repeated a specific number of times in each of the four stages. In particular, the blocks are repeated 1, 1, 4, and 3 times, respectively, following the same configuration as the original HRNet model. However, in the offset head, we had to make a modification to the number of block repetitions in order to address memory constraints. As a result, the blocks are repeated 2 times in the 4th stage of the offset head. Each modularized block in our network consists of 1, 2, 3, or 4 branches, depending on the stage in which it is located (1st, 2nd, 3rd, or 4th). Each branch is associated with a different resolution and is composed of four residual units and one multi-resolution fusion unit.

2. Additional Qualitative Results

We provide additional qualitative comparisons of OVeNet to its HRNet baseline for the three examined datasets: Cityscapes [1], ACDC [2] and ADE20K [5]. More specifically, we provide sets of successful segmentations in Fig. 1, 2 and 3 and sets of challenging and failure cases in Fig. 4, 5 and 6 correspondingly.

In Fig. 1 we depict the successful results on Cityscapes. We also present an additional comparison of the default instance of OVeNet built only on HRNet [3] with the instance of OVeNet built on HRNet + OCR [4]. As we can see, OVeNet (HRNet) reduces correctly the number of misclassified terrain pixels on the right side of the road in the 3rd row of Fig. 1. On the other hand, OVeNet (HRNet + OCR) achieves a better prediction since it enlarges the sidewalk segment and it eliminates the terrain. Regarding the 6th row, OVeNet (HRNet) expands the terrain on the right, while the HRNet + OCR-based model increases additionally the sidewalk segment in the background. Overall, the latter generally achieves better predictions than the former.

In Fig. 2 we observe the results of successful segmentations on ACDC, where HRNet [3] is compared to OVeNet built only on it. Specifically, in the 2nd as well as the 7th row of Fig. 2, OVeNet enhances the prediction made by HRNet in the sidewalk on the right. A similar result happens with the terrain segment in the 5th row, as it covers correctly all the more space. Thus, our model surpasses baseline’s performance on adverse conditions.

In Fig. 3 we depict the results of successful segmentations on ADE20K. To be more specific, in the 3rd as well as the 4th row, OVeNet enhances the prediction made by HRNet by enlarging some segments (river and house respectively). As a result, our model surpasses baseline’s performance on everyday images.

As for Fig. 4, we provide some challenging cases on Cityscapes. To be more specific, we can see that in both rows, HRNet [3] results in a better prediction than OVeNet (HRNet) (e.g. car on the left in the 3rd row, terrain on the right in the 2nd one). On the other hand, OVeNet (HRNet + OCR) outperforms both the HRNet and HRNet-based model, leading to a better total outcome.

Regarding Fig. 5, we see some some failure cases of our model built on HRNet [3] on ACDC. Specifically, in both rows, there are more correctly predicted labels in the vegetation segment on the right outputted by HRNet than by OVeNet.

As for Fig. 6, we see some some false results predicted our model built on HRNet [3] on ADE20K. Specifically, in both set of images, there are more correctly predicted labels in the tree and wash machine segment respectively outputted by HRNet than by OVeNet.

All in all, we observe that OVeNet not only produces results that are very faithful to ground-truth annotations, but its predictions also surpass the predictions made by the initial HRNet in terms of quality. By correctly classifying several pixels which are misclassified by the HRNet baselines, OVeNet (HRNet + OCR) eliminates inconsistencies and enhances the shape and appearance of respective segments.
Table 1. **The architecture of the OV eNet (main body).** Within each cell of our network, there are three distinct components. The first component, represented by $[\cdot]$, refers to the residual unit. The second component is a numerical value that specifies the number of times the residual unit is repeated. The final component is another numerical value that indicates how many times the modularized block is repeated within the cell. In each residual unit, the variable C is used to represent the number of channels.

<table>
<thead>
<tr>
<th>Head</th>
<th>Resolution</th>
<th>Stage 1</th>
<th>Stage 2</th>
<th>Stage 3</th>
<th>Stage 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semantic</td>
<td>4×</td>
<td>$\begin{bmatrix} 1 & 1.64 \ 3 & 3.64 \ 1 & 1, 256 \end{bmatrix}$ $\times 4 \times 1$</td>
<td>$\begin{bmatrix} 3 & 3, C \ 3 & 3, C \end{bmatrix}$ $\times 4 \times 1$</td>
<td>$\begin{bmatrix} 3 & 3, C \ 3 & 3, C \end{bmatrix}$ $\times 4 \times 4$</td>
<td>$\begin{bmatrix} 3 & 3, C \ 3 & 3, C \end{bmatrix}$ $\times 4 \times 3$</td>
</tr>
<tr>
<td></td>
<td>8×</td>
<td>$\begin{bmatrix} 3 & 3, 2C \ 3 & 3, 2C \end{bmatrix}$ $\times 4 \times 1$</td>
<td>$\begin{bmatrix} 3 & 3, 2C \ 3 & 3, 2C \end{bmatrix}$ $\times 4 \times 4$</td>
<td>$\begin{bmatrix} 3 & 3, 2C \ 3 & 3, 2C \end{bmatrix}$ $\times 4 \times 3$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16×</td>
<td>$\begin{bmatrix} 3 & 3, 4C \ 3 & 3, 4C \end{bmatrix}$ $\times 4 \times 4$</td>
<td></td>
<td>$\begin{bmatrix} 3 & 3, 4C \ 3 & 3, 4C \end{bmatrix}$ $\times 4 \times 3$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>32×</td>
<td>$\begin{bmatrix} 3 & 3, 8C \ 3 & 3, 8C \end{bmatrix}$ $\times 4 \times 3$</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

resulting in more realistic outputs.

References

Figure 1. **Additional qualitative results of selected examples on Cityscapes.** From left to right: input image, ground-truth annotation, and prediction with HRNet [3], OVeNet (HRNet), and OVeNet (HRNet+OCR). Best viewed on a screen and zoomed in.
Figure 2. **Additional qualitative results of selected examples on ACDC.** From left to right: input image, ground-truth annotation, and prediction with HRNet [3] and OVeNet. Best viewed on a screen and zoomed in.
Figure 3. Additional qualitative results of selected examples on ADE20K. From left to right: input image, ground-truth annotation, and prediction with HRNet [3] and OVeNet. Best viewed on a screen and zoomed in.
Figure 4. **Challenging cases on Cityscapes.** From left to right: input image, ground-truth annotation, and prediction with HRNet [3], OVeNet \((HRNet)\), and OVeNet \((HRNet+OCR)\). Best viewed on a screen and zoomed in.

Figure 5. **Failure cases on ACDC.** From left to right: input image, ground-truth annotation, and prediction with HRNet [3] and OVeNet. Best viewed on a screen and zoomed in.

Figure 6. **Failure cases on ADE20K.** From left to right: input image, ground-truth annotation, and prediction with HRNet [3] and OVeNet. Best viewed on a screen and zoomed in.