
Supplemental information
A. A Generalization Bound
Proof. The main idea of the proof is to first bound the error
of all (labeled) training clients, using results from multitask
learning. Then, treat the novel client as a target domain in
a domain adaptation problem. This allow us to use results
from domain adaptation to bound the novel client error.

The error of a hypothesis h over a distribution P is de-
fined by errP (h) =

∫
X×Y l(h(x), y)dP (x, y). The error of

the novel client for a given hypothesis space H is defined
by

errPnew(H) := inf
h∈H

errPnew(h) (2)

Since Pnew is independent of Q, we can integrate over
all P ∼ Q and obtain

errPnew(H) =

∫
P

inf
h∈H

errPnew(h)dQ(P). (3)

Using Theorem 2 from [3] with Pnew treated as the target
domain and P as the source domain, gives that ∀h,∀P :
errPnew(h) ≤ errP (h)+ 1

2 d̂H∆H(P, Pnew). Plugging into
Eq. (3) gives

errPnew(H) ≤ (4)∫
P

infh∈H

[
errP (h) + 1

2 d̂H∆H(P, Pnew)
]
dQ(P) (5)

= errQ(H) + 1
2

∫
P

infh∈H d̂H∆H(P, Pnew)dQ(P). (6)

Since errQ(H) is unknown, we use Theorem 2 from [2] to
bound the error of the novel client. That yields the bound in
the theorem.

Now we explain this in detail. If we have only one task
and one domain, the most common solution is to find h ∈ H
that minimizes the loss function on a training set sampled
from probability distribution P . In general,H is a hyperpa-
rameter defined by the network architecture. [5] shows that
in this simple case the generalization error is bounded. The
bound depends on the “richness” of H . Choosing a “rich”
H (with large VC-dimension), increase the generalization
error.

In OD-PFL, each client may use a different hypothesis.
Instead of bounding the error of one chosen hypothesis, we
bound the error of the chosen hypotheses space that each
client chooses from. In this way, we can bound the error of
a novel client, without assuming anything about the way it
chose from the hypothesis space.

First, we findH that is ”rich” enough to contain hypothe-
ses that can fit all data of the clients. Second, for each client,
we select the best hypothesis h ∈ H according to the client
data. We define Q as a distribution over P , so, each client

sample from Q a distribution Pi. We further define H as
a hypothesis space family, where each H ∈ H is a set of
functions h : X → Y .

The first goal is to find a hypothesis space H ∈ H that
minimizes the weighted error of all clients, assuming each
client uses the best hypothesis h ∈ H . We define this error
using the following loss:

errQ(H) :=

∫
P

inf
h∈H

errP (h)dQ(P) (7)

while errP (h) :=
∫
X×Y l(h(x), y)dP (x, y). In practice,

Q is unknown, so we can only estimate errQ(H) using the
sampled clients and their data.

For each client i = 1..n, we sample the training data of
the client from X × Y ∼ Pi. We denote the sampled train-
ing set by zi := (x1, y1), ..., (xm, ym), and z = z1, ...zn.
The empirical error of a specific hypothesis is defined by
êrz(h) := 1

m

∑m
i=1 l(h(xi), yi). In training we minimize

the empirical loss

êrz(H) :=
1

n

n∑
i=1

inf
h∈H

êrzi(h) (8)

[2] shows that if the number of clients n satisfies n ≥
max{ 256

ε2 log(
8C(32

ε ,H
∗)

δ), 64
ε2 }, and the number of samples

per client m satisfies m ≥ max{ 256
nε2 log(

8C(32
ε ,H

n
l)

δ), 64
ε2 },

then with probability 1− δ all H ∈ H satisfies

errQ(H) ≤ êrz(H) + ε (9)

were C(32
ε , H

n
l) and C(32

ε , H
n
l) are the covering num-

bers defined in [2], and can be referred to as a way to mea-
sure the complexity of H . Note that a very “rich” H makes
êrz(H) small, but increases the covering number, so for the
same amount of data, ε increases.

For the PFL setup, this is enough, since we can ensure
that for a client that sampled from Q and was a part in the
federation, the chosen hypothesis h ∈ Hhas an error close
to the empirical one êrz(H). For a novel client, this may
not be the case. The novel client may sample from a differ-
ent distribution over P. In the general case, the novel client
may even have a different distribution over X × Y . In the
most general case, the error on the novel client cannot be
bound. In DA, a common distribution shift is a covariate
shift, where P (x) may change but P (y|x) remains constant.
This assumption lets us bound the error of the novel client.

[3] shows that for a given H ∈ H , if S and T are two
datasets with m samples, then with probability 1 − δ, for
every hypothesis h ∈ H:

errT (h) ≤ errS(h) + 1
2 d̂H∆H(S, T) (10)

+4

√
2d log(2m)+log(2

δ)

m + λ (11)

where errD(h) = E(x,y) D[|h(x) − y|] is the error of the
hypothesis on the probability distribution of the domain D.
d̂H∆H(S, T) is a distance measure between the domains S
and T, and λ = arg maxh∈H errT (h) + errS(h). Note that
for over-parametrized models like deep neural networks λ
should be very small. To keep the analysis shorter we as-
sume this is the case. We also assume thatm is large enough

to neglect 4

√
2d log(2m)+log(2

δ)

m . These assumptions are not
mandatory, and the following analysis can be performed
without them. This allows us to treat Pnew as the target
domain and P as the source domain in Eq. (4)

B. Additional Details about Training
B.1. Encoding batches of a dataset

We encode the whole dataset by feeding a large batch
to the encoder. We also tested an alternative approach that
can be applied to large datasets that do not fit in a single
batch in memory. In these cases, we randomly split the data
into smaller batches, encoded each batch, and used the av-
erage over batch descriptors as the final descriptor. When
we tested this approach for several batch sizes, we did not
observe that the performance was consistently sensitive to
batch size. Encoding the full dataset in a single batch did
perform better in most scenarios tested.

B.2. Training in two phases

In ODPFL-HN two main components are trained using
a federation of labeled clients: A hypernetwork and a client
encoder. We train them together end to end. When training
the client encoder, batches from the same client yield differ-
ent representations, and we found that this variability might
hurt training end to end. We design 2 approaches to allevi-
ate this issue: (1) Calculating the embedding using all client
data, without breaking it into mini-batches. (2) Training in
two steps by first learning an embedding of each training
client, namely, a mapping from a client identity i to a dense
descriptor ei. This embedding layer was trained in a stan-
dard way jointly with the hypernetwork. Then, we trained
the client encoder. We tested both methods, and choose be-
tween them using cross validation. Practically, for the iNat-
uralist experiments, the second method was better. For all
other datasets, the first method was better. We now explain
the second approach in detail.

Training the client encoder and the HN in two phases was
done in the following way: The hypernetwork optimizes the
LHN loss defined in 12 by updating both its own weights θ
and client representations {ek}Nk=1.

LHN (θ, e1, ..., eN) =

n∑
i=1

mi∑
j=1

l(fθ(ei)(x
i
j), y

i
j) (12)

The client encoder trains to predict the representations

learned by the hypernetwork from raw client data by min-
imizing Lencoder defined in 13. At inference time, a novel
client feeds its data to the client encoder and gets an em-
bedding vector. Then, feeding the embedding vector to the
hypernetwork produces a custom model for the client.

Lencoder =

n∑
i=1

L2(gγ({xij}
mi
j=1), ei) (13)

In detail, in each communication step: (1) The server se-
lects a random client and feeds its embedding ei to the HN
to create the personal model hi = h(·, wi). (2) The servers
sends hi, ei, and the current encoder gγ to the client. (3)
The client then locally trains this network on its data and
communicates the delta between the weights before and af-
ter training ∆wi back to the server. Using the chain rule, the
server can train the hypernetwork and the embedding layer
itself. (4) The client trains the encoder locally using the cur-
rent given embedding ei by optimizing Lencoder, then, the
updates of the encoder are sent back to the server for aggre-
gation. Inference is done in the same way as in end-to-end
training.

Up to this point, the client encoder trains in parallel to
the hypernetwork and has no influence on the hypernetwork
weights or the embeddings of the labeled clients. We found
that freezing the encoder and fine-tuning the hypernetwork
using the trained encoder predictions improve the results of
our method. This is done by optimizing the hypernetwork
parameters θ using LFine−tune.

LFine−tune(θ) =

n∑
i=1

mi∑
j=1

l(fθ(gγ({xij}
mi
j=1))(xij), y

i
j)

(14)
However, this fine-tuning step reduces the performance of
labeled clients. Note that in a real-world application, the
server may save a version of the hypernetwork before fine-
tuning it and use it when generating models for the original
federation.

C. Experimental Details
For all experiments presented in the main text, we use a

fully connected hypernetwork with 3 hidden layers of 100
hidden units each. The size of the embedding dimension
is Nclients

4 . Experiments are limited to 500 communication
steps. In each step, communication is done with 0.1·Ntrain.

Hyperparmeter Tuning We divide the training samples
of each training client into 85% / 15% train / validation sets.
The validation sets are used for hyperparameter tuning and
early stopping of all baselines and datasets. The hyperpa-
rameters searched and the corresponding values by method:
FedAVG: The local momentum µlocal is set to 0.5. We
search over local learning-rate ηlocal ∈ {1e−1, 5e−2, 1e−

2, 5e−3, 1e−3}, number of local epochsK ∈ {1, , 2, 5, 10}
and batch size {16, 32, 64}. FedProx and FedMA: We used
the hyperparameters used by [33] in the official code that
provided by the authors. pFEdHN: We set µlocal = 0.9.
We search over learning-rates of the hypernetwork, em-
bedding layer and local training: ηhn, ηembedding, ηlocal ∈
{1e − 1, 5e − 2, 1e − 2, 5e − 3, 1e − 3}, weight decays
wdhn, wdembedding, wdlocal ∈ {1e − 3, 1e − 4, 1e − 5},
number of local epochs K ∈ {1, , 2, 5, 10} and batch size
{32, 64}. ODPFL-HN: We perform the optimization us-
ing the same parameters and values as in pFEdHN. In ad-
dition, we search for the learning rate of the client encoder
ηencoder ∈ {1e− 1, 5e− 2, 1e− 2, 5e− 3, 1e− 3}.

CIFAR(Section 6.3) We use a LeNet-based target net-
work with two convolution layers with 16 and 32 filters
of size 5 respectively. Following these layers are two fully
connected layers of sizes 120 and 84 that output logits vec-
tor. The client encoder follows the same architecture with
an additional fully connected layer of size 200 followed by
Mean-global-pooling for the first 100 units and Max-global-
pooling for the other 100 units. Global pooling is done over
the samples of a batch.

iNaturalist, Landmarks and Yahoo Answers
Data(Sections 6.4-6.6) We use a simple fully-connected
network with two Dense layers of size 500 each, followed
by a Dropout layer with a dropout probability of 0.2. The
client encoder is a fully-connected network with three
Dense layers of size 500. The first layer is followed by
Mean Global Pooling for the first 250 units and Max Global
Pooling for the other 250 units.

D. Differential Privacy
Proof.

∆g := maxD,D′ ||g(D)− g(D′)|| (15)
= maxD,D′ ||ψ(1

|D|
∑
x∈D φ(x))

−ψ(1
|D′|

∑
x∈D′ φ(x))||.

Denote d ∈ D and d′ ∈ D′ as the only nonidentical instance
between D and D′, so D/d = D′/d′. Then

∆g = maxD,D′ ||ψ
(

1
|D| [
∑
x∈D/d φ(x) + φ(d)]

)
(16)

−ψ
(

1
|D′| [

∑
x∈D′/d′ φ(x) + φ(d′)]

)
||

= maxd,d′
1
|D| ||ψ (φ(d)− φ(d′)) ||

Assume that φ is bounded by Bφ, so |φ(d)−φ(d′)| < 2Bφ.
Then from the linearity of ψ:

∆g ≤ 1

|D|
Lψ|φ(d)− φ(d′)| ≤ 2

|D|
LψBφ (17)

Figure 5. Test accuracy (±SEM) for CIFAR-10 novel client while
applying DP. As ε decreases, we need more data to preserve the
same accuracy of the model.

Figure 6. A tSNE plot of the embedding space for the pathological
split of CIFAR10. In this setting, each client has a task of catego-
rizing samples from two classes. Each dot and digit correspond to
one client. The digits 2 marks clients that had samples from class
2; specifically (2,1), (2,3) (2,4) etc. Same for the digit 9. Similar
plots can be made for the remaining classes. Clients involving the
same class tend to be closer to each other (2 on the right, 9 at the
top).

We also compare different levels of privacy, using lower
values of ε. Figure 5 shows that more privacy (lower ε),
requires a larger dataset to maintain the same accuracy of
the model.

E. Embedding Space Visualization
To get intuition for the way the client encoder captures

similarities between clients, we wish to visualize the space
of client embeddings E . Since each client involves sam-
ples from different classes, it is somewhat hard to visualize
which client should be close. To capture some of those sim-
ilarities, we mark clients that contain samples from some
class with that class number. Figure 6 shows all clients
that have samples from class #2 (left) or #9 (right). Clients
that share a class tend to be located closer. Note that those
clients have another class that is not shown, so they are not
expected to fully cluster together.

	. A Generalization Bound
	. Additional Details about Training
	. Encoding batches of a dataset
	. Training in two phases

	. Experimental Details
	. Differential Privacy
	. Embedding Space Visualization

