Supplementary Material

A. Training details

Framework We use the pytorch-lightning [15] frame-
work for training our models. We use backbone ResNet-50
and ViT models implemented in timm [63]. We adapt Py-
Torch public implementations of the FGVC models (PMG,
WSDAN, SIMTrans) to work in our framework and with
these backbones.

Hyperparameters We train for 50 epochs using a batch
size of 16 (Aircraft, Cars, CUB) or 64 (NABirds, Fungi) on
a single A100 GPU with automatic mixed precision. We use
a cosine decay learning rate schedule without any warmup.
We use an initial learning rate of 10~ for all randomly ini-
tialized layers and 10~ 3 for pretrained layers; we found this
to work well for all models with the exception of WSDAN,
for which we use 1072 for all layers. We apply weight
decay to convolution and linear layers, but not to bias or
normalization parameters (batch norm, layer norm). We set
weight decay to 5x 10~ for models with a ResNet-50 back-
bone and 10~° for models with a ViT-base backbone. For
ViT models, we use a high dropout rate of 0.7 before the
classifier to help with overfitting.

Backbones We use backbone models pretrained for clas-
sification on ImageNet-1k [47]. We choose not to use
ImageNet-21k pretrained weights for ViT in order to keep
the pretraining as uniform as possible across all mod-
els. This does have the effect of lowering the ViT
performance, but it still performs well. For ResNet-
50 we use the torchvision weights IMAGENET1K_V2.
For ViT, we use the weights provided by timm [63] as
vit_base_patchl6_224.augreg_inlk.
Augmentation and preprocessing During training, ran-
dom crops are taken from the images with area drawn uni-
formly between 8-100% of the image area, and with as-
pect ratio between % and %, and then resized to 448 X
448. This is followed by scaling the brightness, satu-
ration and contrast with values drawn randomly between
0.9 and 1.1, and applying a horizontal flip with proba-
bility 0.5. Pixels are then normalized by the ImageNet
pixel mean (0.485,0.456,0.406) and standard deviation
(0.229,0.224,0.225).

Evaluation At evaluation, images are resized to 512 x
512, center cropped to 448 x 448, and normalized by the
ImageNet mean and standard deviation.

B. Dataset details

Table 1 gives the statistics of the datasets we use in our
evaluation. We use five common FGVC datasets, as well as
the proposed iCub dataset. All datasets have bounding box

Dataset #Cls #Train #Test Boxes
Aircraft [41] 100 6,667 3,333 v
Cars [33] 196 8,144 8,041 v
CUB [57] 200 5,994 5,794 v
NABirds [55] 555 23,929 24,633 v
Fungi [44] 183 32,753 3,640

iCub 200 n/a 16,876 v

Table 1. Number of classes, training images, and test images for
each of the datasets considered in this paper. Aircraft, Cars, CUB,
and NABirds are well-established FGVC datasets, and Fungi is a
more recent addition. We also introduce the iCub dataset to aid in
our analysis.

annotations except for Fungi. Fig. 12 shows distributions of
object spatial properties (bounding box area, aspect ratio,
and distance from image center) for CUB and iCub; iCub
has a very different distribution of object size. Fig. 13 shows
additional example images chosen randomly from iCub.

C. Incorrect labels

Label errors in validation set 262

Out-of-distribution label errors 133
In easy set 27
In elusive set 129

In-distribution label errors 129
In easy set 1
In elusive set 72

... but actually easy (corrected) 49
... still elusive (corrected) 8

Table 2. Label errors in CUB. The CUB validation set has 262
incorrect labels (out of 5794). About half are out-of-distribution;
the true class isn’t in the dataset. Of the in-distribution errors,
more than half are in the elusive set; but many of those images are
actually easy given the correct labels (all models predict the true
correct label).

Some degree of label error exists in many datasets, which
often rely on crowd-sourcing to obtain or verify labels. Van
Horn et al. [55] estimated around 4% label error in CUB
using domain-expert opinions. They experimentally veri-
fied that up to 10% label error in the training set has little
effect on the test performance; but label error in the test set
is problematic, since correct predictions might be counted
as incorrect.

We don’t know the level of label error in the other
datasets, but we did obtain the label errors and corrected
labels for CUB from the authors of [55]. We evaluate the
errors and their corrections using prediction overlap to see
where label error shows up. We summarize our findings in

Bounding box area

Bounding box aspect ratio

Distance from image center

6 2 8
w cub — icub
E 3 1 A 4
0 T T T T 0 T T T u T 0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 0.0 0.2 0.4 0.6 0.8 1.0

Figure 12. CUB vs iCub. Distribution of CUB and iCub images with respect to object size, aspect ratio, and distance from center (which
are defined using the bounding box). iCub contains many more images with small (or distant) birds than CUB.

Figure 13.

Table 2. About a fifth of the out-of-distribution errors (ac-
tual ground-truth class isn’t in the dataset) fall in the easy
set, probably because they are similar to the class they are
erroneously assigned to. On the other hand, more than half
of the in-distribution errors show up in the elusive set—
mostly, it turns out, because the models are actually pre-
dicting the correct class. If we assign the true correct label,
49 out of 72 of the “elusive” images are actually trivial, and
only 8 remain elusive. Applying the corrected labels (for the
in-distribution errors) reduces the size of the elusive subset
of CUB from 3.8% to 2.7%.

Additional iCub samples. Zoom in for detail.

0.25
n [® resnet50 @ WSDAN
g 0207 o Vit ® IET
& ® PMG o Al
S 0157 ® SIMTrans
> ’
& 0.10 1 ° 0%
8 ® 090 @ ® =
0.05 A (
X " o ® - ®] e
e® ~ [L ® -
0.00 ¢ otessss
Aircraft Cars cus Fungi iCub NABirds

Figure 14. Easy classes. Percent of classes for each method and
dataset that are easy (classes for which the model misclassifies 0
images across all runs). The easy classes for the “All” method are
classified correctly across all 30 runs. Notably, iCub has no “easy”
classes.

Aircraft Cars

CUB

iCub NABirds

1.0

r0.6
ro0.4

r0.2

0.0

3.0

rls

rl.2
r0.6

0.0

Pearson: 0.079 (0.0) Pearson: 0.347 (0.0) Pearson: 0.123 (0.0)
©
[J]
—_
<
e
]
©
—
-
9]
3 _— u
%)
<
[J]
[v]
c
@
-
0
o
IIEEEEEE OB BN EEE
N DETE § N .- H B moams

1.0
ro.8
r0.6
ro.4

ro0.2

easy elusive easy elusive easy

- - —1 0.0
elusive easy elusive easy elusive

Prediction overlap

Figure 15. Correlation with spatial properties. We show correlation between object spatial properties (bounding box area, aspect ratio,
and distance from center of image) and prediction overlap. In most cases, the correlation is negligible; however, iCub and NABirds both
show correlation between object size and image difficulty (low prediction overlap).

D. Additional results
D.1. Easy classes

In Fig. 14, we show the percentage of easy classes, di-
vided by model. An “easy” class is one for which all im-
ages of that class are always predicted correctly. For a given
model, the easy classes are those for which all images are
predicted correctly across the 5 different trials. Cars has
the most easy classes when considering all models together,
but CUB has the most on average when considering each
model individually—except for WSDAN, which has a large
number of easy classes for Cars. Notably, iCub has no easy
classes.

D.2. Spatial properties

In Fig. 15, we show correlation between prediction over-
lap and three different spatial properties of images for each
dataset. In most cases, there is not significant correlation.
The exception is with object size, measured by bounding
box area, on a few of the datasets; in particular, iCub and
NABirds, with a small correlation observable for Cars as
well. Aspect ratio and “centeredness” don’t appear to con-
tribute to image difficulty, but object size does.

D.3. Pairwise class confusion

We show additional visualizations of pairwise class con-
fusion in Figs. 16 to 18. Fig. 16 shows the distributions of
pairwise similarity between classes (Eq. (4)). The distribu-
tions are fairly similar between datasets, with the exception

of iCub. In Fig. 17, we show a KL divergence confusion
matrix for each dataset. These matrices were created by
averaging the KL divergence scores across all models for
each pair of classes. Fig. 18 shows a combination of a tra-
ditional confusion matrix thresholded according to the KL
divergence matrix. The red cells (4, j) show similar class
pairs (KL divergence more than 3 standard deviations be-
low the mean), with darker color showing more predictions
for class j on images that belong to class ¢. Blue cells show
predictions belonging to classes that aren’t considered “sim-
ilar” according to our definition. Predictions are aggregated
across all models.

0.15 Aircraft Cars CuB

0.10 4 b b

0.05 4 b b

0.00 T T T T T T T T T T T Y T T T
Fungi NABirds iCub

PDF

0.15

0.10 4 b b

0.05 1 b b

0.00 y T T T T T T T T T T T T T T
0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50

Class-pairwise KL divergence

Figure 16. Distributions of pairwise similarity. These plots show the distribution of the proposed KL divergence-based class confusion
measure. The x-axis is histogram bins of symmetric KL divergence values and the y-axis shows the density of class pairs that fall into that
bin. iCub has a very heavy "leading tail” of confusion.

Aircraft
5

NABirds

Figure 17. Pairwise KL divergence. We show pairwise KL divergence matrices averaged across all models; they are similar to confusion
matrices but take into account the full predictive distribution rather than counting predictions. Lighter color indicates smaller KL divergence
(higher class similarity).

Aircraft Cars CuB

Fungi NABirds iCub

Figure 18. Confusion matrices. We show confusion matrices aggregating predictions across all models. Darker color indicates a larger
number of predictions. Red cells indicate similar-class pairs, based on thresholding the pairwise KL divergence matrices at 3 standard
deviations below the mean. Blue cells indicate predictions in classes that aren’t considered “similar”. We ignore the main diagonal (correct
predictions) for this visualization.

