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Abstract

The additional materials provided encompass an ex-
tended ablation study, which serves to demonstrate the ro-
bustness and efficacy of our method in addressing semantic
segmentation tasks. Furthermore, we present supplemen-
tary visualizations and discussion that accentuate the im-
pactful role played by the D-LKA module that we have pro-
posed.

1. Computational complexity of the D-LKA

A comparison of the number of parameters for normal
convolution and the constructed convolution is shown in ta-
ble 1. While the numbers of the standard convolution ex-
plode for a larger number of channels, the parameters for
decomposed convolution are lower in general and do not
increase as fast. Deformable decomposed convolution adds
a lot of parameters in comparison to decomposed convo-
lution but is still significantly smaller than standard con-
volution. The main amount of parameters for deformable
convolution is created by the offset network. Here, we as-
sumed a kernel size of (5,5) for the deformable depth-wise
convolution and (7,7) for the deformable depth-wise dilated
convolution. This results in the optimal number of parame-
ters for a large kernel of size 21× 21. A more efficient way
to generate the offsets would greatly reduce the number of
parameters.

It is worth noting that the introduction of the deformable
LKA does indeed introduce additional parameters and
floating-point operations per second (FLOPS) to the model.
However, it’s important to emphasize that this increase in
computational load does not impact the overall inference
speed of our model. Instead, for batch sizes > 1, we

even observe a reduction in inference time, shown in Fig-
ure 1. For instance, based on our extensive experiments,
we have observed that for a batch size of 16, the inference
times with and without deformable convolution are only
8.01ms and 17.38ms, respectively. We argue that this is due
to the efficient implementation of the deformable convolu-
tion in 2D. To measure the times, a random input of size
(b× 3× 224× 224) is used. The network is inferred 1000
times after a GPU warm-up period of 50 iterations. The
measurements are done on an NVIDIA RTX 3090 GPU.

1 2 4 8 12 16

LKA per Image 21.8 34.91 28.25 20.15 18.1 17.4

D-LKA per Image 28.84 16.43 11.63 9.22 8.45 8.01
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Figure 1. The inferences time in ms for an input image of size
3×224×224 on the 2D methods. The times are already calculated
for a single image for better comparison.

2. Performance vs Efficiency
To leverage the performance vs parameter tradeoff we

visualize the performances on Synapse 2D dataset, reported
in DSC and HD, and the memory consumption based on



Table 1. The number of parameters for standard convolution and decomposed convolution. The kernel size is 21× 21. Adapted from [4].

# Channels Std. Conv. Decomp. Conv. Deform. Decom. Conv. Offset DDW-Conv. Offset DDW-D Conv.
C = 32 451, 584 3, 392 197, 204 40, 050 153, 762
C = 64 1, 806336 8, 832 396, 308 80, 050 307, 426
C = 128 7, 225344 25, 856 800, 660 160, 050 614, 754
C = 256 28, 901, 376 84, 480 1, 633, 940 320, 050 1, 229, 410
C = 512 115, 605, 504 300, 032 3, 398, 804 640, 050 2, 458, 722

the number of parameters in Figure 2. The D-LKA Net

Figure 2. Performance vs memory chart to compare the perfor-
mance of SOTA approaches, including ScaleFormer [5], MISS-
Former [6], SwinUnet [2], DAEFormer [1], with our the proposed
2D D-LKA Net on Synapse dataset. DSC, HD, and Memory val-
ues are normalized using min-max normalization for improved
visibility and comparability.

induces a rather large amount of parameters with approx-
imately 101M. This is less than the second best-performing
method, the ScaleFormer [5], which used 111.6M param-
eters. Compared to the more light-weight DAEFormer [1]
model, we, however, achieve a better performance justify-
ing the parameter increase. The majority of the parameters
are from the MaxViT encoder; thus, replacing the encoder
with a more efficient one can reduce the model parameters.
It’s also worth noting that in this visualization, we initially
normalized both the HD and memory values within the [0,
100] range. Subsequently, we scaled them down from 100
to enhance the representation of higher values.

3. Qualitative results on the Synapse dataset

To further visualize our model capability, we provide a
different perspective of the 3D organ segmentation of the
Synapse dataset in Figure 3 and Figure 4. We neglect the

visualization of the liver and the stomach so partly occluded
organs get a better visibility.

To gain a better understanding of the limitations associ-
ated with the 2D approach, it is advisable to expand our per-
spective into the 3D domain. As illustrated in Figure 5, we
can observe inconsistencies among the slices. These dis-
crepancies can be attributed to the absence of information
exchange between neighboring slices in a 2D network. In
contrast, our 3D network successfully mitigates these limi-
tations.

4. Limitations on the Skin dataset
Figure 6 shows a qualitative visualization of ISIC 2018

samples, where our approach fails. However, it is also vis-
ible that the segmentation is either noisy or quite primitive.
Since this is also present in the training data, this could hin-
der the network from learning accurate segmentations.

5. Robustness Visualization
In line with the ablation study presented in the main pa-

per, we conducted a thorough evaluation of various methods
on the Synapse 2D dataset. To ensure the robustness of our
findings, we executed each model five times and reported
their statistical significance. This detailed analysis is visu-
ally represented in Figure 7.
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Figure 3. Additional qualitative results on the Synapse Dataset. Liver and Stomach are not shown for improved visibility of smaller
occluded organs.
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Figure 4. Additional qualitative results on the Synapse Dataset.
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Figure 5. Additional qualitative results of the 2D D-LKA-Former on the Synapse dataset, visualized in 3D. The comparison to the 3D
D-LKA Net is shown. Here, it is visible that the 3D version creates less noise due to the inter-slice dependencies.



G
ro

un
d 

Tr
ut

h
La

be
l

C
on

to
ur

 L
in

es

Figure 6. Additional qualitative results of the 2D D-LKA-Former on the ISIC 2018 dataset.

Figure 7. Statistical evaluation of single organ performance of Synapse dataset comparing state-of-the-art methods, including TransUnet
[3], MISSFormer [6], SwinUnet [2], DAEFormer [1], with our the proposed 2D D-LKA Net. Visualized are the results on the Synapse
dataset with the performance reported in DSC.
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