
A. Experimental Setup

Configuration of hyperparameters. cResNet-20,
ResNet-18 and MobileNet were trained with batch sizes
of 128 at an initial learning rate of 0.1. For TinyImageNet
batch sizes were reduced to 64 and initial learning rate in-
creased to 0.2. We used stochastic gradient descent opti-
mizer with a momentum value of 0.9 and weight decay of
10−4, whereas for MobileNet weight decay of 10−5 was
used. Cross Entropy Loss was used with label smoothing of
0.01. We use step learning rate strategy to decay learning
rate by 0.1 after 50% and 75% of the total epochs. For CI-
FAR100, models were trained for 160 epochs with Random-
Crop and RandomHorizontalFlip augmentations whereas
for TinyImageNet the number of epochs were reduced to
120, and RandomAffine and RandomHorizontalFlip were
used as augmentations. Moreover, for ImageNet, models
were trained for 60 epochs with RandomResizedCrop and
RandomHorizontalFlip as augmentations.

Backbone of SIAMFC was replaced by the first 3 blocks
of ResNet-18. Model was trained with a batch size of 8 at
an initial learning rate of 10−3 using SGD optimizer with
momentum 0.9 and weight decay 5× 10−4. We use Expon-
tial learning rate schedular with gamma value of 0.59 and
final learning rate of 10−5. All experiments were trained
for 50 epochs with early stopping enabled. Please refer
to open-source implementation of https://github.
com/huanglianghua/siamfc-pytorch for further
details.

Hardware and training time. Single Nvidia V100 32GB
card with 512 GB RAM and a 64-core processor was used
for running all the experiments. The training time for pre-
training ResNet-18 on ImageNet was 30 hours, and each
subsequent run on the specified budget also took 30 hours.

B. Iterative Selection

In iterative search strategy we identify the right lay-
ers of any given network to be converted to binary or
full precision, one-by-one. This approach is described
in Algorithm 1. For the k out of n layers to be bina-
rized, the jth step of binarization, where j ∈ [1, k], can
be stated as finding the optimal layer θ∗ ∈ Θ(j) to be
binarized. It can be mathematically stated as follows.

Algorithm 1: Iterative Selection
Given :Empty set {};Current layer chosen θj ;

Optimal layer chosen θ∗
j ;

Current objective function L; Optimal
objective function L∗;
Input :Network weight set Θ
Output :Binarized weight set Φ
Φ← {}
for j = 1 . . . k do
L∗ ←∞
for θj ∈ Θ do
L ←

ITERATIVE SELECTION(θj +Φ,Θ− θj , )
if L < L∗ then
L∗ ← L
θ∗
j ← θj

end
end
Φ← PUSH(θ∗

j )
Θ→ POP(θ∗

j )

end

θ∗
(j) = argmin

θ⊂Θ(j),W
L(F(θ +Φ(j),Θ(j) − θ,x),y)

s.t. B(θ +Φ(j),Θ(j) − θ) ≤ B0,

where Θ(j) = Θ−Φ(j). Here, Φ(j) denotes the layers
that have already been binarized in the previous j − 1 steps
and is defined as Φ(j) = {θ∗

(1),θ
∗
(2), . . . ,θ

∗
(j−1)}, where

θ∗
j denotes the optimal layer chosen at the jth step of bina-

rization to obtain B2NN. For calculating θ∗
j , we perform

brute search over all elements of Θ(j) and choose the layer,
which when binarized, maximizes the performance of the
intermediate B2NN model.

C. Broader Impact
We proposed a new paradigm to perform partial binariza-

tion wherein layers are either full precision or full binary
layers. As highlighted in our experiments, it results in im-
proved model efficiency, enhanced model compression, per-
formance gains in image classification and object tracking,
and transferability across datasets. These broader impacts
contribute to advancements in efficient and accurate neural
networks, enabling their deployment in various resource-
constrained scenarios and application domains. Moreover,
the reduced footprint of such AI systems is particularly im-
portant because the demand for AI continues to grow, and
every consumption is becoming a critical concern. Further,
the improved inference speed of the devices due to model
compression can enhance the user experience and enable
new applications in areas such as real-time object tracking,
medical diaganosis, among others. Since the B2NN mod-
els are light, these also allow sensitive data to be processed
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locally rather than on cloud servers. This can enhance pri-
vacy by minimizing the sharing of personal data on external
servers.

This highlights the need of more research focused on
layer selection and the potential need of specialized hard-
ware which can benefit from B2NNs. Also, binarization,
which is one of the strongest compression techniques, will
help reduce the hardware and computation constraints which
inhibit the use of larger and complex models for production.
Further, as machine learning continues to grow in scale and
complexity, the environmental impact of training and infer-
ence becomes increasingly significant. Model compression
techniques can reduce the computational resources required
for training and inference, leading to lower energy consump-
tion and a reduced carbon footprint.

D. Experiments: Additional Details

D.1. Choice of activation function

Table 1. Performance of B2NNs with different activation function
obtained at various FLOPs on CIFAR100 with cResNet20. FLOPs
for full precision network is 4.14× 107.

Remaining Activation function

FLOPs (%) Identity ReLU HardTanh BinReLU RPReLU

100.00 16.40 65.44 61.15 64.98 63.83
88.78 42.72 54.66 60.64 64.53 63.89
77.57 48.12 54.33 60.23 64.72 64.4
66.35 50.60 41.23 59.65 64.66 63.72
52.33 53.13 41.28 58.87 63.90 63.43
32.71 53.68 29.18 54.00 61.11 61.65
4.67 51.69 20.39 48.05 53.72 53.96

BinReLU activation function. The proposed BinReLU
activation function is designed to enhance the stability of the
full-precision as well as binary components of a B2NN in
general. Mathematically, BinReLU can be stated as

f(x) =

{
−1 if x ≤ −1
x otherwise

, (1)

where x and f(x) denote the input and output of the activa-
tion function.

Table 1 shows the BinReLU function together with ReLU,
HardTanh, RPRelU and Identity mapping. For full-precision
networks, ReLU is considered a very effective choice of
activation, however, since it eliminates the activation infor-
mation below 0, it does not work well for binary networks.
For BNNs, either of HardTanh or Identity functions are pre-
ferred. However, both these activations do not work well
for the real-valued networks (Table 1). Note that an identity

mapping works well for BNN since for such cases, nonlin-
earity is inherently introduced through the squashing of the
activation values to -1 and 1 using Sign(·). BinReLU is
inspired from the other activations stated here in a sense that
it preserves the characteristics of ReLU for positive activa-
tions and keeps them real-valued, and also ensures that the
activation information between -1 and 0 is preserved.

D.2. Performance on simple classification datasets.

This section presents results obtained with MixBin,
along with various model compression baselines, on the
CIFAR-100 and TinyImageNet datasets. Baselines here
include Network Slimming, HAWQ-V2, Adaptive MBQ,
BNAS and random selection.

Table 3 shows performance scores for cResNet-20 for
CIFAR-100. Additionally, we provide a sensitivity analysis
for this setting, in which we calculate the error in accuracy
by conducting three separate runs on different random seeds.
Table 2 and 4 present result on TinyImageNet dataset.

D.3. Effect of binarizing different parts of a net-
work.

The performance of the constructed B2NN model de-
pends heavily on the choice of Φ. In Table 5, we compare
the performance of MixBin with several trivial baselines.



Table 2. Performance scores for the MobileNetV1 architecture
on TinyImageNet datasets for five compression methods: Network
Slimming, HAWQ-V2, Adaptive MBQ, BNAS and MixBin (ours).
The term "budget" refers to the percentage of FLOPs that remain
after applying the respective compression method.

Method Budget (%) Acc. (%) ↑ FLOPs (%) ↓

Full Precision Network - 52.85 100
Binary Network - 34.28 4.67

Network Slimming

80

53.67 80
HAWQ-V2 51.86 81.03
Adaptive MBQ 50.43 81.72
BNAS 51.09 81.20
MixBinGrad 56.62 80.15
MixBinLoss 54.26 77.03
Random 50.05 81.32

Network Slimming

60

51.44 60
HAWQ-V2 49.82 61.88
Adaptive MBQ 49.69 61.88
BNAS 49.48 61.88
MixBinGrad 52.11 63.18
MixBinLoss 50.75 61.61
Random 49.27 61.88

Network Slimming

40

45.83 40
HAWQ-V2 46.10 41.24
Adaptive MBQ 43.03 41.03
BNAS 46.48 40.08
MixBinGrad 48.50 39.68
MixBinLoss 47.69 38.38
Random 42.3 39.45

Network Slimming

20

35.33 20
HAWQ-V2 39.31 21.43
Adaptive MBQ 39.73 9.13
BNAS 42.06 16.71
MixBinGrad 41.12 13.83
MixBinLoss 41.12 13.83
Random 38.34 20.31

Table 3. Performance scores for the cResNet-20 architecture on
CIFAR-100 datasets for five compression methods: Network Slim-
ming, HAWQ-V2, Adaptive MBQ, BNAS and MixBin (ours).
The Full precision network has a total of 4.14× 107 FLOPs, while
the binary network generated using the Bi-RealNet method has
1.93 × 106 FLOPs. The term "budget" refers to the percentage
of FLOPs that remain after applying the respective compression
method.

Method Budget(%) Acc.(%)↑ FLOPs(%)↓ Error↓

Full Precision Network - 64.76 100 0.48
Binary Network - 53.18 4.67 0.45

Network Slimming

80

66.67 80 0.48
HAWQ-V2 65.90 77.57 0.18
Adaptive MBQ 65.77 77.57 0.15
BNAS 65.57 77.57 0.22
MixBinGrad 65.72 77.57 0.24
MixBinLoss 66.01 77.57 0.23
Random 65.03 80.37 0.53

Network Slimming

60

65.75 60 0.31
HAWQ-V2 65.77 60.75 0.38
Adaptive MBQ 65.70 60.75 0.18
BNAS 65.61 60.75 0.31
MixBinGrad 65.85 60.75 0.19
MixBinLoss 65.62 60.75 0.39
Random 65.31 60.75 0.34

Network Slimming

40

63.87 40 0.14
HAWQ-V2 64.97 38.31 0.35
Adaptive MBQ 61.96 38.31 2.25
BNAS 61.15 38.31 1.31
MixBinGrad 65.32 38.31 0.42
MixBinLoss 65.36 38.31 0.32
Random 61.11 43.92 0.89

Network Slimming

20

59.20 20 0.42
HAWQ-V2 62.03 21.49 0.17
Adaptive MBQ 58.46 18.69 1.93
BNAS 57.59 21.49 0.19
MixBinGrad 63.76 21.49 0.47
MixBinLoss 63.49 21.49 0.23
Random 58.56 21.49 0.63

Network Slimming

10

52.52 10 0.39
HAWQ-V2 58.41 13.12 0.31
Adaptive MBQ 56.86 10.28 1.81
BNAS 57.03 10.28 0.50
MixBinGrad 60.27 11.08 0.50
MixBinLoss 57.54 10.28 0.75
Random 56.47 10.28 0.59



Table 4. Performance scores for the ResNet-18 architecture on
TinyImageNet datasets for five compression methods: Network
Slimming, HAWQ-V2, Adaptive MBQ, BNAS and MixBin (ours).
The Full precision network has a total of 5.63× 108 FLOPs. The
term "budget" refers to the percentage of FLOPs that remain after
applying the respective compression method.

Method Budget (%) Acc. (%) ↑ FLOPs (%) ↓

Full Precision Network - 56.88 100
Binary Network - 44.43 4.67

Network Slimming

80

55.45 80
HAWQ-V2 57.58 81.25
Adaptive MBQ 57.55 81.25
BNAS 56.99 81.25
MixBinGrad 57.11 81.25
MixBinLoss 57.45 81.25
Random 56.89 81.25

Network Slimming

60

55.3 60
HAWQ-V2 56.80 62.50
Adaptive MBQ 56.71 62.50
BNAS 57.06 62.50
MixBinGrad 56.67 62.50
MixBinLoss 57.51 62.50
Random 56.6 62.50

Network Slimming

40

54.12 40
HAWQ-V2 55.70 43.76
Adaptive MBQ 56.10 43.76
BNAS 55.71 43.76
MixBinGrad 56.44 43.76
MixBinLoss 56.18 43.76
Random 56.0 40.62

Network Slimming

20

54.00 20
HAWQ-V2 54.36 21.88
Adaptive MBQ 54.58 25.01
BNAS 53.69 21.88
MixBinGrad 55.08 21.88
MixBinLoss 54.86 21.88
Random 54.25 24.12

Network Slimming

10

51.83 10
HAWQ-V2 53.57 12.51
Adaptive MBQ 53.87 12.51
BNAS 53.43 12.51
MixBinGrad 54.25 12.51
MixBinLoss 54.25 12.51
Random 54.02 10.92

Table 5. Performance comparision of B2NNs obtained using
MixBin vs. the various trivial approaches. The B2NNs are con-
structed using cResNet-20 architecture on CIFAR-100 datasets.
Here, Rear-BN and Front-BN represent B2NNs constructed with
binary layer placed in the rear and front parts of the network, re-
spectively. Pseudo-random involves modifying 30% of the MixBin
generated B2NNs. The Full Precision network and Binary Network
have 4.14× 107 and 1.93× 106 FLOPs respectively.

Method Budget(%) Acc.(%)↑ FLOPs(%)↓ Error↓

Full Precision Network - 64.76 100 0.48
Binary Network - 53.18 4.67 0.45

Front-BN

80

65.12 83.17 0.52
Rear-BN 63.51 83.17 1.31
Pseudo-random 65.18 83.17 0.07
MixBinGrad 65.72 77.57 0.24
MixBinLoss 66.01 77.57 0.23

Front-BN

60

64.13 63.54 0.37
Rear-BN 59.32 63.54 0.02
Pseudo-random 64.60 63.54 0.22
MixBinGrad 65.85 60.75 0.19
MixBinLoss 65.62 60.75 0.39

Front-BN

40

63.64 41.12 0.59
Rear-BN 57.78 41.12 0.43
Pseudo-random 64.28 38.31 0.62
MixBinGrad 65.32 38.31 0.42
MixBinLoss 65.36 38.31 0.32

Front-BN

20

61.79 21.49 0.66
Rear-BN 56.49 21.49 0.60
Pseudo-random 61.40 18.68 0.49
MixBinGrad 63.76 21.49 0.47
MixBinLoss 63.49 21.49 0.23

Front-BN

10

59.28 10.28 0.41
Rear-BN 55.91 10.28 0.56
Pseudo-random 55.28 10.28 0.57
MixBinGrad 60.27 11.08 0.50
MixBinLoss 57.54 10.28 0.75


