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A. Additional implementation details

This section provides further details on the implementa-
tion of ProcSim. We use the PyTorch framework [34] for
all the components below.

A.l. Data augmentation

We perform standard data augmentation techniques as in
previous Deep Metric Learning (DML) works [39, 40, 60]:
random cropping to 224 x 224 and horizontal flipping with
probability 0.5.

A.2. Model

The DML model is a ResNet-50 [16] in which we re-
placed the output classification layer with a fully connected
layer that provides embeddings. The batch normalization
layers have been frozen for improved convergence and sta-
bility across batch sizes [39]. We take the ResNet-50 model
implementation from the PyTorch library for computer vi-
sion torchvision, which also provides weights for Im-
ageNet [41]. In particular, we use the second version of
the pre-trained weights, i.e., IMAGENET1K_V2. Through-
out all the experiments, we use an embedding dimension of
512.

A.3. Optimization

We use the Adam [62] optimizer to update the param-
eters of the DML model. For CUB200 [49], we train the
model for 150 epochs with a base learning rate of 1074,
For both Cars196 [22] and Standard Online Products (SOP)
[46], we use a base learning rate value of 10~° and train
for 250 epochs. In all cases, we use a weight decay [63]
of 4 - 10~% and the default values in PyTorch [34] for the
rest of the hyperparameters. We do not apply learning rate
scheduling for unbiased comparison [39].

Proxies in Proxy-NCA are optimized independently us-
ing the Adam optimizer with all the default parameters.
This choice is related to the observations Proxy-NCA++

1 Work performed during an internship at Amazon.

[70], which indicate that using independent optimizers for
updating the class proxies and the model parameters is one
of the main drivers of performance that improves upon
vanilla Proxy-NCA [30].

The training process uses 4 NVIDIA Tesla V100 SXM?2
16 GB GPUs with a batch size of 90 each. Note that the
effective batch size is 360, which allows full utilization of
the hardware at disposal for faster training and is typically
not considered an influential factor of variation [39]. While
datasets with many classes like SOP [46] may benefit from
a larger batch size, Wang et al. [50] showed that when train-
ing a model with the Multi-similarity (MS) loss, the perfor-
mance on dataset like CUB200 [49] decreases with large
batch sizes over 80.

A4. Loss

The ProcSim loss is composed of two terms, as seen in
Eq. (4). One such term is the supervised DML loss. By de-
fault, we use the MS loss [50], ¢f. Eq. (5), with the hyper-
parameters proposed in the original paper: a = 2, 8 = 40,
and § = 0.1. We adapt the original implementation' to
perform batch operations and exclude pairs (x;,%;) in P
instead of removing all pairs with a similarity higher than
1 — €, where we set € = 1075,

The Pseudolabel Language Guidance (PLG) loss is com-
puted using the original implementation?, in which the lan-
guage part of CLIP [37] (ViT-B/32 variant) is the chosen
Large Language Model (LLM). In the experiment with the
BERT language model in Tab. 2, we use the model and
weights from hugging face®. The parameter w scaling the
PLG loss is set to w = 10 for CUB200 [49] and w = 5.5 for
Cars196 [22], the values reported in the official code reposi-
tory. For SOP [46], they recommend using w € [0.1, 1], and
we chose w = 0.5 after testing with w € {0.1,0.5, 1.0}.

To compute the sample confidence, we treat 7 and o as
constant during backpropagation. We calculate the Proxy-
NCA loss [30] using the PyTorch metric learning library
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[31] with the default hyperparameters. The value of A in
Eq. (3) determines how much the confidence of a sam-
ple decreases for losses greater than Otsu’s threshold [33].
Asymptotically, o; — 1 as A — oo, and as A — 0,
oi = 0if 6% > 705 and g; — 1if £ < 708,
We tested A € {0.01,0.1,1.0,10.0} and found the values
of A\ = 0.1 on Cars196 [22] and SOP [46], and A = 1.0
on CUB200 [49], to give good performance across different
levels of noise.

Note that a larger A on CUB200 [49] implies that sam-
ples with a high loss are more penalized. This penalization
explains the behavior observed in Tab. 1, in which Proc-
Sim obtained the best performance on noisy data. That is
because the contribution of clean samples was potentially
decreased in the absence of synthetic noise.

B. Computation of confidence values

Proof of Claim 1. The confidence score in Eq. (3) is
claimed to satisfy Conditions (i) to (v). In the following,
we prove each of these conditions:

. . . . o P
(i) o; is translation invariant w.r.t. £, "

Note that each value ¢ is subtracted by Otsu’s

threshold 7. Thus, proving that 7 is equivariant to
translations of the proxy loss suffices (as those trans-
lations get canceled out). 7 is computed as the cost
minimizer threshold among those in 7 (see Alg. 1).
T are the midpoints between consecutive loss values.
Hence, 7 is translation equivariant. Finally, the cost is
unaltered as the variance is translation invariant.

(ii) 0, > 0j <= Y < é?“’xy (i, § in the same batch):

Since (i, j) are in the same batch, they will share the

same threshold 7. Then, we have
gﬁ’roxy - gl?roxy — T

< 2 i .
o\ < N Since A € R ®)

The function max {0, -} is increasing and hence the
order is preserved. Its image is R, and the restric-
tion of W(-) to the domain of positive numbers is
monotonously increasing. Therefore, for a < b

W(a) <WO) = e V@ > WO - (6)

since the exponential function is monotonously in-
creasing.

(iii) o; € [0,1]:

The image of the restriction of the Lambert W func-
tion to R is [0, 00), so the exp(-) will be restricted to
(—00, 0]. Therefore, o; € [0,1] as claimed.

(iv) As A\ = 0, o; — 1if clean, o0; — 0 otherwise:

The input of the Lambert W function

7

A—0+ 2\

)

y oY 7 —co ™Y <7
m — =
00 Otherwise

where the first case corresponds to the definition of
clean. Note that it cannot happen that £ = 7 as the
possible thresholds are mid-points between consecu-
tive loss values. For the first case

lim exp[-W (max {0, z})] (8a)
——o00

x

=exp[-W(0)]=exp[0] =1, (8b)

and for the second case

qclgrolo exp [-W (max {0, z})] (9a)
= lim exp[-W ()] (9b)
=exp[—o0] =0. (9¢)

(v) AsA — o0, 0; — 1:

In this case, the input of the Lambert W function tends
to 0, so we can leverage Eqgs. (8a) and (8b).

O

As acknowledged in the paper, the expression in Eq. (3)
is inspired by SuperLoss [5], which yields a simple and
clean equation for the computation of the confidence that
satisfies Conditions (i), (ii), and (v). In the remainder of this
section, we focus on the key differences between our con-
fidence score and that of SuperLoss. While these changes
might seem subtle, they conceptually make a huge differ-
ence and significantly improve performance (see Tab. 1).

B.1. Constraining the confidence

As stated in Condition (iii), we want to constrain the con-
fidence o; € [0, 1]. Plugging the constraint into the sample-
level confidence version of Eq. (1) with constrained mini-
mization, i.e.

Ei |:H11I213(£Z — ’Ti)O'i =+ )\(log 0'1')2:| y (10)
g;€

yields an analytical expression to compute the confidence

score corresponding to

o; = exp {—W (; max{/ﬁo, “;”m RNGR)

where By = —2 when ¥ = R, as in SuperLoss [5], cf.
Eq. (2). When X = [0, 1] as required by Condition (iii) we
obtain Sy = 0. By constraining the confidence, we avoid
over-weighting the samples with a low loss and, at the same
time, obtain the following desirable properties:
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(b) Separable distributions.

Figure 4. Distribution of sample confidences computed using Eq. (2) with 7 being the average of loss values and A = 1. In this toy
example, the loss values follow a mixture of two Gaussians, shown in different colors. We had to decrease the precision of floating point

2

numbers from 64 to 32 bits to avoid numerical errors for Sp = —=.

e

Asymptotic behavior: ~ With 3y = —2 as in SuperLoss,
as\A\— 0,0, > 0ifl; >7,0;, > eif; <7,ando; — 1

if ¢; = 7. Instead, with 5y = 0, we satisfy Condition (iv).

Numerical stability:  The evaluation of W(-) can be-
come inaccurate close to —%, the so-called branch point.
Particularly at the branch point, attained at ¢; — 7 < A\f,
with g = — % the estimators used by well-known scientific
computing libraries such as SciPy [72] can fail to converge.
The choice 8y = 0 avoids these numerical problems.

Fig. 4 presents a toy example illustrating the distributions
with both values of 83. When we have a bimodal distribu-
tion with separable modes (Fig. 4b), selecting Sy = 0 as-
signs a confidence of 1 to all samples with loss belonging to
the distribution of a smaller mean. If the small loss assump-
tion is satisfied, these loss values probably belong to clean
samples, so we don’t want to alter their contribution. The
confidence score for the other samples can be controlled by
A and be made arbitrarily close to O.

In the non-separable case (Fig. 4a), using By = —2/e
assigns diverse confidence scores to the samples belonging
to the same distribution. By contrast, using 3y = 0 assigns a
unit confidence score to all values at the left of the threshold
(the supposedly clean samples).

B.2. Thresholding

Even if the loss can differentiate a wrong label and fol-
lows the ideal bimodal distribution, we can see that the
global average is not suited. In Fig. 5, we include a toy ex-
ample to illustrate this observation, where we only consider
one isolated iteration (so that the change of hard samples
w.r.t. time is not an issue). Otsu’s method selects 7 based
on the assumption that the distribution of losses is bimodal,
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Figure 5. Distribution of sample confidences computed using
Eq. (2) with 7 being either the average as in SuperLoss [5] or
Otsu’s threshold [33] as in ProcSim. In both cases, we set 5o = 0
and A = 0.1. In this toy example, the loss values follow a mixture
of two Gaussians, shown in different colors.

which allows for treating clean and noisy samples differ-
ently.

Regarding the change of hard samples across iterations,
we can also justify the choice of 7 with a simple exam-
ple. Imagine that the distribution of sample values is the
same but just gets shifted. In the usual case, loss values de-
crease as training progresses, so the global average is larger
than the average at a given iteration. Under this scenario,
the number of samples whose contribution will be reduced
decreases at every iteration. That is precisely the idea of
curriculum learning, in which harder samples are included
progressively at later training stages. However, it is not jus-
tifiable from the perspective of discerning clean from noisy



Multi-similarity Proxy-NCA
100
90
80
E 70
3
o 60
o
5O AN e i A
40
30
0 1000 2000 3000 0 1000 2000 3000

Iteration Iteration

(a) Results on CUB200 [49] with 50% uniform noise.

Multi-similarity Proxy-NCA

gso f/\’f’*/"‘w
5]
[&]
Q
14

0 500 1000 1500 2000 0 500 1000 1500 2000
Iteration Iteration

(b) Results on CUB200 [49] with 50% semantic noise.

Figure 6. Classification recall (%) for the task of noisy sample
identification using Otsu’s method [33]. The red line shows the
moving average of the values obtained in a window of 100 itera-
tions.

samples since the number of noisy labels in a dataset stays
constant.

B.3. Confidence score and training loss

SuperLoss [5] proposes minimizing ¢;0; treating the
confidence score o; as a constant and using any training ob-
jective ¢; for both the parameter update and the computation
of 0;. Consequently, if the training objective is composed
of more than one term, they should be treated equally and
as a whole. Instead, ProcSim applies different treatments
to the supervised and self-supervised objectives implicated
in the training loss. This simple modification is motivated
by the fact that the self-supervised objective is unaffected
by wrong annotations. Empirically this improves the DML
performance, as seen in Tab. 1.

Another notable difference with SuperLoss [5] is that
ProcSim disentangles the training loss and the objective
used for the confidence computation. Doing so is similar
to works relying on two independent models for unbiased
noisy sample identification [15, 17, 23,51, 59, 60]. More-
over, it allows using losses with different properties.

On the one hand, we use Proxy-NCA loss [30] for its
usefulness in noise identification, which is justified from

Table 6. Recall@1 on the benchmark datasets for different levels
of uniform noise when CLIP [37] image guidance is used instead
of relying on an ImageNet classifier and an LLM. Inside the paren-
theses, we indicate the performance difference with ProcSim.

NOISELEVEL — || 10% | 20% | 50%

CUB200 [49] 67.5(-1.8) | 69.1 (-1.3) | 60.5(-0.3)
CARS196 [22] 86.4 (-0.8) | 85.5(-0.5) | 74.4 (-0.8)
SOP [46] 79.0 (-0.3) | 77.9 (-0.5) | 73.2 (-0.1)

a probabilistic perspective in Sec. 3.2 and empirically in
Fig. 2. For further evidence, even though ProcSim does
not perform a hard classification into clean and noisy sam-
ples, we evaluated the usefulness of Otsu’s method [33]
over Proxy-NCA [30] and MS [50] in the task of noisy
sample identification. Fig. 6 depicts the evolution of the
classification recall during training. As expected, we cab
correctly identify most noisy samples by thresholding the
Proxy-NCA loss [30]. However, using the same proce-
dure on the MS loss [50] results in random classification.
When the injected noise follows the semantic model pro-
posed in this paper, Fig. 6b shows that Proxy-NCA is also
better at spotting noisy samples, although the classification
recall is significantly lower than when using the uniform
noise model. We expected this behavior as semantic noise
generates wrong labels that are harder to identify.

On the other hand, as shown in Tab. 1, the base perfor-
mance of Proxy-NCA [30] falls behind the MS loss [50].
At the same time, the MS loss is ineffective for spotting
noisy samples, as shown in the example above. The abil-
ity to employ different and independent loss functions en-
hances the flexibility of ProcSim and enables us to leverage
the strengths of various approaches, combining the best of
both worlds.

C. CLIP image embeddings

The PLG objective [40] is a clever way to consider se-
mantics to determine inter-class relationships. However,
the number of ImageNet classes determines the maximum
number of distinct language embeddings we can obtain with
this procedure. ImageNet [41] covers a wide range of items
but, especially when using datasets with low inter-class
variations such as SOP [46], thousands of different classes
fall into the same ImageNet category. The semantic ambi-
guity of those classes given by the language guidance regu-
larization hinders resolving inter-class relations. In general,
when the domain of the downstream task has little overlap
with ImageNet classes, the resolution of inter-class relation-
ships is somehow limited.

ImageNet contains categories covering 2 or 3 classes
in the CUB200 dataset [49], such as hummingbird,
albatross, jay, and pelican. We can observe a



Table 7. Recall@1 (%) on the benchmark datasets corrupted with different probabilities of uniform noise. The reported results for

all methods except ProcSim (ours) are taken from the PRISM paper [

tables. Best results are shown in bold. While MCL+PRISM [

] and rounded to one decimal place for consistency with the other

] performs slightly better than ProcSim for low levels of noise on SOP [46],

our method consistently and considerably outperforms it in the other datasets.

BENCHMARKS —

CUB200 [

] CARS196 [22] SOP [46]

METHODS |

| 10% | 20% | 50% || 10% | 20% | 50% || 10% | 20% | 50%

Algorithms for image classification under label noise

Co-teaching [15] 53.7 | 51.1 | 450 || 73.5 | 704 | 59.6 || 62.6 | 60.3 | 52.2
Co-teaching+ [59] 533 | 51.0 | 452 || 71.5 | 69.6 | 624 || 63.4 | 67.9 | 58.3
Co-teaching [ 15] w/ Temperature [61] || 55.6 | 54.2 | 50.7 || 77.5 | 76.3 | 66.9 || 73.7 | 72.0 | 64.1
F-correction [35] 534 | 526 | 488 || 71.0 | 69.5 | 59.5 || 51.2 | 46.3 | 48.9
DML with Proxy-based Losses

FastAP [4] 54.1 | 537 | 51.2 || 66.7 | 66.4 | 58.9 || 69.2 | 67.9 | 65.8
nSoftmax [61] 52.0 | 49.7 | 42.8 || 72.7 | 70.1 | 54.8 || 70.1 | 68.9 | 57.3
ProxyNCA [30] 47.1 | 46.6 | 416 || 69.8 | 70.3 | 61.8 || 71.1 | 69.5 | 61.5
Soft Triple [36] 519 | 49.1 | 415 | 76.2 | 71.8 | 52.5 || 68.6 | 55.2 | 38.5
DML with Pair-based Losses

MS [50] 574 | 545 | 40.7 || 66.3 | 67.1 | 38.2 || 69.9 | 67.6 | 59.6
Circle [47] 47.5 | 453 | 13.0 || 71.0 | 56.2 | 152 || 72.8 | 70.5 | 41.2
Contrastive Loss [8] 51.8 | 51.5 | 386 || 72.3 | 709 | 229 || 68.7 | 68.8 | 61.2
MCL [52] 56.7 | 50.7 | 31.2 || 742 | 69.2 | 46.9 || 79.0 | 76.6 | 67.2
MCL + PRISM [25] 58.8 | 58.7 | 56.0 || 80.1 | 78.0 | 729 || 80.1 | 79.5 | 72.9
ProcSim (ours) 693 | 704 | 60.8 || 87.2 | 86.0 | 75.2 || 79.3 | 784 | 73.3

Table 8. Performance of methods with ResNet-50 [
bold. The results are taken from Roth et al. [

] backbone and embedding dimension 512 on clean datasets. The best results are in
]. Inside the parentheses, we indicate the boost in performance of ProcSim w.r.t. the mean

performance of MS+PLG, which is equivalent to setting unit confidence for all samples in the ProcSim framework (by letting A — 00).

BENCHMARKS — CUB200 [49] CARS196 [22] SOP [46]
METHODS | |l Rer | R@ | NMI | R@l | R@ | NMl || R@l | R@I0 | NMI
EPSHN [73] 64.9 75.3 82.7 89.3 78.3 90.7
NormSoft [61] 61.3 73.9 - 84.2 90.4 - 78.2 90.6 -
DiVA [65] 69.2 79.3 71.4 87.6 92.9 72.2 79.6 91.2 90.6
DCML-MDW [74] 68.4 77.9 71.8 85.2 91.8 73.9 79.8 90.8 90.8
IB-DML [69] 70.3 80.3 74.0 88.1 93.3 74.8 81.4 91.3 92.6
MS+PLG [40] 69.6 04 | 795+0.2 | 70.7 £ 0.1 87.14+02 | 923+0.3 | 73.0+0.2 79.0+0.1 | 91.0£0.1 | 90.0 +0.1
S2SD+PLG [40] 714 +03 | 81.1 0.2 | 73.5+0.3 90.2+03 | 944+0.2 | 724+03 81.34+02 | 923 +0.2 | 91.1 0.2
ProcSim (ours) 70.1 ( ) | 79.6 ( ) | 69.5(-1.2) || 87.7( ) | 92.4¢( ) | 72.2(-0.8) || 80.3 ( ) | 91.4¢( ) | 89.8 (-0.2)
similar coverage for the Cars196 dataset [22], in which, duces the knowledge transfer effectiveness.

e.g., sports car, cab, wagon, convertible, land
rover, racing car, and minivan are present in Ima-
geNet. This coverage provides a level of specificity that al-
lows differentiating some of the classes and assessing their
similarity. However, for the SOP dataset [46], we find su-
perclasses such as stapler or kettle that, although
being ImageNet categories, account for thousands of dif-
ferent classes. While some superclasses such as chair,
cabinet, and 1amp have multiple ImageNet classes ade-
quate for each, the instance retrieval nature of SOP and its
large number of classes inside a superclass potentially re-

Tab. 6 presents the results obtained using CLIP image
embeddings [37] instead of relying on a classifier and a lan-
guage model. In this case, we bypass the ImageNet classi-
fier and directly obtain embeddings encoding semantic in-
formation from images without limiting the number of dif-
ferent embeddings. We can see that this approach performs
on par with standard PLG on SOP [46] but underperforms
it on the other datasets.



D. Additional comparisons

In Tab. 4, we compared ProcSim to the methods reported
in the PRISM paper [25]. For the sake of space, we ex-
cluded the algorithms for image classification under label
noise. However, it may be interesting to compare these
methods, especially those derived from Co-teaching [15],
which also relies on the small loss trick using the loss ob-
tained by another model to have unbiased estimates. For
this reason, we present all the results in Tab. 7.

ProcSim is a method for robust DML on noisy datasets.
Nevertheless, for completeness, in Tab. 8, we include the
obtained results on clean data side-by-side with state-of-
the-art approaches. We present the methods with the same
backbone architecture and embedding dimensionality as
our current approach, as these are two of the main DML-
independent drivers for generalization [68]. ProcSim of-
fers comparable performance to state-of-the-art methods on
clean data, although we focus on noisy datasets. In partic-
ular, ProcSim slightly improves the recall obtained without
per-sample confidence, i.e., MS+PLG [40].

Note that Normalized Mutual Information (NMI)
slightly decreases when assigning confidence to samples.
However, NMI varies across implementations and is some-
times uninformative [66], so this metric has to be interpreted
with caution.

The best method for clean data is S2SD+PLG. S2SD
[68] applies feature distillation between the output embed-
dings and embeddings computed with the so-called tar-
get networks, which results in higher-dimensional vectors.
However, S2SD results in an objective expressed as a mean
of losses for each target network. The fact that the mean is
not over samples makes it incompatible with the presented
framework.

E. Usage with state-of-the-art backbone

For a fair comparison, we performed all experiments us-
ing the standard ResNet-50 backbone [16]. Nonetheless,
when trying to get the best results, one can leverage more
powerful and expressive backbones using modern architec-
tures such as transformers [71]. Swin transformers [64] are
an example of these, and have been successfully applied to
the visual retrieval task [67].

Tab. 9 shows the performance of ProcSim with Swin
transformers [64] as the backbone model and the same hy-
perparameters used in the main paper for all the results with
the ResNet-50 [16] backbone (see details in Appendix A,
where we specify the values for each of the three benchmark
datasets). With no fine-tuning, ProcSim outperforms the
base MS loss under the presence of noise for the CUB200
[49] and the Cars196 [22] datasets. The difference in per-
formance is monotonously increasing with the noise level
and achieves an astounding increment of up to 23% Re-

call@1 for the Cars196 [22] dataset injected with 50% uni-
form noise.

Consistently with the results obtained in the paper, the
performance on the SOP is somehow more limited. In this
case, the base MS loss performs slightly better than Proc-
Sim, although by at most 1.3% of Recall@1. By selecting
w = 0 and A — 0o, ProcSim becomes MS. We could there-
fore match the performance of the plain MS loss and po-
tentially obtain better results with some fine-tuning. How-
ever, we wanted to show the generalization capabilities of
our method tailored only to each dataset regardless of the
synthetic noise injected and the backbone.

F. Obtaining class hierarchies

Finding class hierarchies is posed as a graph traversal
problem and solved by depth-first search. Given natural
language class names, we use WordNet to search all their
possible meanings (with synsets) and semantic superclasses
(with hypernyms). We consider each synset as a graph
node and the hypernyms as oriented edges and keep explor-
ing the graph according to the depth-first search algorithm.
Among all possible paths in the graph resulting from differ-
ent meanings of the class name or its superclasses, we select
the one with a common hypernym across all dataset classes.
Once we find this path, we stop looking for more possible
synsets and hypernyms.

Note that class hierarchies are not used during training
when applying ProcSim. They are needed only for the se-
mantic noise model proposed in this paper, which aims at
showing the robustness capabilities of ProcSim on bench-
mark datasets corrupted with more realistic noise.

Below, we provide details to obtain the hierarchy of
classes for each dataset. We also show visualizations of
the obtained class hierarchies. In them, we suppressed the
nodes in the graph with a single child for better visualiza-
tion.

F.1. CUB200

The CUB200 [49] dataset provides natural language
class names consisting of bird types, and thus the common
hypernym is bird. We first preprocess the class names to
satisfy the expected input of WordNet [29]. Some classes
are not included in WordNet [29], in which case, we manu-
ally set the family of the species as a hypernym contained in
the word corpora. Fig. 7 depicts the CUB200 [49] hierarchy
found using the described procedure.

F.2. Cars196

The Cars196 dataset [22] contains classes whose com-
mon hypernym is car and have natural language names.
However, the class labels contain other information like car
type, brand, model, and year. Among all the class descrip-
tors, only the car type is usable in WordNet [29]. Some



Table 9. Recall@1 (%) on the benchmark datasets corrupted with different types and probabilities of noise when Swin transformers [64]
are used as backbone model. Best results shown in bold. Inside the parentheses, we indicate the boost in performance of ProcSim.

NOISE TYPE — NONE SEMANTIC UNIFORM

METHODS | || - | 1% | 20% | 50% || 10% | 2% | 30% | 50%
CUB200 dataset [49]

MS [50] 87.8 84.7 81.8 77.2 83.7 79.7 72.1 67.6
ProcSim (ours) || 88.4 (+0.6) || 88.4 (+3.7) | 88.5(+6.7) | 87.8( ) || 88.1(+4.4) | 88.2(+8.5) | 87.1( ) | 84.7 ( )
CARS196 dataset [22]

MS [50] 92.0 88.9 85.0 71.5 88.9 83.3 78.1 46.7
ProcSim (ours) || 90.5 (-1.5) || 89.3 (+0.4) | 88.3 (+3.3) | 85.1( ) || 89.6 (+0.7) | 87.5 (+4.2) | 84.1(+6.0) | 69.7 ( )
SOP dataset [46]

MS [50] 84.3 83.5 82.6 77.7 834 82.3 81.3 78.3
ProcSim (ours) || 84.2(-0.1) || 82.3(-1.2) | 82.3(-0.3) | 77.6(-0.1) 83.0(-0.4) | 82.1(-0.2) | 81.1(-0.2) 77.5 (-0.8)
brands may have different models of the same car type. [69] Jenny Denise Seidenschwarz, Ismail Elezi, and Laura Leal-
Some models can also have different versions released over Taixé. Learning intra-batch connections for deep metric

several years. With this in mind, we first group the classes learning. In ICML, 2021. 5
by year, model, brand, and car type. Then, the car types are [70] Eu Wern Teh, Terrance DeVries, and Graham W Taylor.
fed to WordNet [29] to find the complete class hierarchy, Proxynca++: Revisiting and revitalizing proxy neighbor-
which we show in Fig. 8. hood component analysis. In ECCV, 2020. 1
[71] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
F.3. SOP reit, Llion Jones, Aidan N Gomez, £ ukasz Kaiser, and Illia
. . Polosukhin. Attention is all you need. In NeurIPS, 2017. 6
Unlike the other datasets, SOP [16] does not contain nat- [72] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt
ural language class names. Instead, the class names con- Haberland, Tyler Reddy, David Cournapeau, Evgeni
sist of numerical identifiers of the product. The only natu- Burovski, Pearu Peterson, Warren Weckesser, Jonathan
ral language description is in the form of categories. Since Bright, Stéfan J. van der Walt, Matthew Brett, Joshua Wil-
training and testing partitions have multiple classes for each son, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J.
category, we can inject semantic noise by only relying on Nelson, Eric Jones, Robert Kern, Eric Larson, C J Carey,
those. [lhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas, De-
nis Laxalde, Josef Perktold, Robert Cimrman, Ian Henrik-
Additional references sen, E. A. Quintero, Charles R. Harris, Anne M. Archibald,
Antdnio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt,
[62] Diederik P. Kingma and Jimmy Ba. Adam: A method for and SciPy 1.0 Contributors. SciPy 1.0: Fundamental Algo-
stochastic optimization. In ICLR, 2015. 1 rithms for Scientific Computing in Python. Nature Methods,
[63] Anders Krogh and John Hertz. A simple weight decay can 17:261-272, 2020. 3
improve generalization. In NeurIPS, 1991. 1 [73] Hong Xuan, Abby Stylianou, and Robert Pless. Improved
[64] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng embeddings with easy positive triplet mining. In WACYV,
Zhang, Stephen Lin, and Baining Guo. Swin transformer: March 2020. 5
Hierarchical vision transformer using shifted windows. In [74] Wenzhao Zheng, Chengkun Wang, Jiwen Lu, and Jie Zhou.
ICCV, 2021. 6,7 Deep compositional metric learning. In CVPR, 2021. 5
[65] Timo Milbich, Karsten Roth, Homanga Bharadhwaj,
Samarth Sinha, Yoshua Bengio, Bjorn Ommer, and
Joseph Paul Cohen. Diva: Diverse visual feature aggrega-
tion for deep metric learning. In ECCV, 2020. 5
[66] Kevin Musgrave, Serge Belongie, and Ser-Nam Lim. A met-
ric learning reality check. In ECCV, 2020. 6
[67] Xu Ouyang, Tao Zhou, Rene Vidal, and Arnab Dhua. Swin-
TransFuse: Fusing Swin and Multiscale Transformers for
Fine-grained Image Recognition and Retrieval. In CVPR
Workshop on Fine-Grained Visual Categorization, 2022. 6
[68] Karsten Roth, Timo Milbich, Bjorn Ommer, Joseph Paul Co-

hen, and Marzyeh Ghassemi. Simultaneous similarity-based
self-distillation for deep metric learning. In ICML, 2021. 6
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Figure 7. CUB200 [49] hierarchy.
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Figure 8. Cars196 [22] hierarchy.
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