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1. Derivations for the Chambolle-Pock method
Chambolle-Pock [1] is a first-order primal-dual opti-

mization algorithm for convex problems of the form:

min
b∈Rd

F (Kb) +G(b), (1)

where F : Rc → [0,+∞], G : Rd → [0,+∞] are proper,
convex and lower semi-continuous functions, and K is a
linear operator from Rd to Rc (i.e. a c× d matrix). We will
refer to this as the primal problem, and b as the primal vari-
able. CP solves instead the following min-max problem:

min
b∈Rd

max
q∈Rc

⟨Kb,q⟩+G(b)− F ∗(q)

where F ∗ is the convex conjugate of F and q is an auxiliary
dual variable. The convex conjugate is defined as follows:

F ∗(q) = max
v∈Rc

⟨q,v⟩ − F (v). (2)

This min-max problem is the primal-dual problem. Due to
the convexity of F and G, if (b∗,q∗) solves the primal-dual
problem, then b∗ solves the primal problem.

The CP algorithm is given in Algorithm 1, where (I +
σ∂F ∗)−1 and (I + τ∂G)−1 are the resolvent operators of
F ∗ and G. The resolvent operator of a function f : Rn →
[0,+∞] is an operator from Rn to Rn defined for each ẑ ∈
Rn as the solution of the following problem

(I + τ∂f)−1(ẑ) = argmin
z

{
∥z − ẑ∥22

2τ
+ f(z)

}
. (3)

In order to derive the expressions for the CP algorithm
in the main paper, we need to express the proposed FPN
estimation energy

E(b) =

N∑
n=1

TV(yn − b) +
λb

2
∥b∥22, (4)

in the form of (1), thus defining F,G and K, and compute
the corresponding resolvent operators.

For our energy E in (4) the primal variable is the FPN b,
which we consider as a vector in RHW . G corresponds to
the data attachment term

G(b) =
λb

2
∥b∥2 =

λb

2

∑
p∈Ω

b2p (5)

(recall that Ω denotes the H×W image domain). The linear
operator K : RHW → R2NHW is given by

K(b) = (∇+b, ...,∇+b), (6)

where ∇+ : RHW → R2HW is the discrete forward differ-
ence gradient operator with Neuman boundary conditions
at the borders of the image. For an image b ∈ RHW and
p = (i, j) ∈ Ω a pixel in the image domain, the two com-
ponents of the gradient are computed as follows:

(∇+b)p,1 =

{
bi+1,j − bi,j if i < H,

0 if i = H,
(7)

(∇+b)p,2 =

{
bi,j+1 − bi,j if j < W,

0 if j = W.
(8)

Thus K concatenates N copies of the gradient of b.
Its transpose, denoted by K⋆ in Alg. 1, is given by
K∗ =

∑N
n=1 div−, where div− is the discrete backwards

difference divergence operator, and is defined as div− =
−(∇+)⋆. For an image v ∈ R2HW with 2 channels at each
pixel, the div− operator at pixel p = (i, j) ∈ RΩ is given by

(div−v)p =


vi,j,1 − vi−1,j,1 if 1 < i < H,

vi,j,1 if i = 1,

−vi−1,j,1 if i = H,

+


vi,j,2 − vi,j−1,2 if 1 < j < W,

vi,j,2 if j = 1,

−vi,j−1,2 if j = W.

(9)

The input of F are elements in R2NHW , i.e. N concate-
nated H×W images with two channels at each pixel. Thus,
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if v ∈ R2NHW , we use the following notation to access its
pixel values:

vn,p = (vn,p,1,vn,p,1) ∈ R2,

for n = 1, . . . , N and p ∈ Ω. Then F : R2NHW → R is
given by

F (v) = ∥v − g∥1 =

N∑
n=1

∑
p∈Ω

|vn,p − gn,p|2

=

N∑
n=1

∑
p∈Ω

√
(vn,p,1 − gn,p,1)2 + (vn,p,2 − gn,p,2)2

(10)

where

g = (∇+y1,∇+y2, ...,∇+yN ) ∈ R2NHW , (11)

is the concatenation of the discrete gradients of the N ob-
served images.

Algorithm 1: Chambolle-Pock min-max solver
Input F,G: proper, convex, l.s.c. functions from

Rn → [0,+∞]
Input K: c× d matrix
Output b: estimated FPN

1 b0, b̄0,q0 := zeros # init with zeros

2 for m from 1 to M do
3 qm+1

n,p = (I + σm∂F ⋆)−1(qm + σmKb̄m)

4 bm+1 = (I + τm∂G)−1(bm − τmK⋆qm+1)

5 θ = 1

(1+2γτm)
1
2
; τm+1 = θτm; σm+1 = σm

τm

6 b̄m+1 = bm+1 + θ(bm+1 − bm)

1.1. Resolvent operator of G

Plugging in our definition of G for the FPN estimation
energy, the resolvent operator results from the following
quadratic minimization problem

(I + τ∂G)−1(b̂) = argmin
b

(
∥b− b̂∥2

2τ
+

λb

2
∥b∥2

)
.

(12)
The solution can be obtained by setting to zero the deriva-
tive of the objective function with respect to b. This yields
a simple scaling of b̂:

b = (I + τ∂G)−1(b̂) =
1

1 + τλb
b̂. (13)

Line 4 in Algorithm 1 of the main paper results from apply-
ing this scaling to b̂ = bm − τmK⋆qm+1 with τ = τm (see
line 4 in Algorithm 1) in this supplemental).

1.2. Resolvent operator of F ∗

To compute the convex conjugate of F , we express F in
terms of the following norm:

H(v) = ∥v∥2NHW =

N∑
n=1

∑
p∈Ω

|vn,p|2

=

N∑
n=1

∑
p∈Ω

√
v2
n,p,1 + v2

n,p,1, (14)

such that F (v) = H(v − g). Then by the properties of the
convex conjugate (see for instance [4]), we have that the
conjugate of F is

F ∗(q) = H∗(q) + ⟨g,q⟩. (15)

Since H is a norm, its convex conjugate is the indicator
function of the unit ball of the corresponding dual norm [4].
We denote this unit ball P . Thus we have

H∗(q) = δP (q) =

{
0 if q ∈ P

+∞ if q ̸∈ P
(16)

where it can be shown that

P = {q ∈ R2NHW : ∀n = 1, ..., N, p ∈ Ω, |qn,p|2 ≤ 1}.
(17)

Thus we have that the convex conjugate of F is

F ∗(q) =

{
⟨q,g⟩ if q ∈ P

+∞ if q ̸∈ P
. (18)

The resolvent operator of F ∗ results from the following
optimization problem

(I + σ∂F ∗)−1(q̂) = argmin
q∈R2NHW

(
∥q− q̂∥22

2σ
+ F ∗(q)

)
= argmin

q∈P

(
∥q− q̂∥22

2σ
+ ⟨g,q⟩

)

= argmin
q∈P

N∑
n=1

∑
p∈Ω

(
|qn,p − q̂n,p|22

2σ
+ ⟨gn,p,qn,p⟩2

)
.

We expressed the indicator function over P as the con-
straint. Note from the definition of P that this constraint
q ∈ P can be written as NWH per-pixel constraints on the
Euclidean norm of the 2 dimensional vector at each pixel
|qn,p|2 ≤ 1. This makes the problem separable, and allows
us to compute the solution by solving per-pixel optimization
2 dimensional problems:

argmin
qn,p,|qn,p|2≤1

|qn,p − q̂n,p|22
2σ

+ ⟨gn,p,qn,p⟩2



The Karush-Kuhn-Tucker [4] conditions for this con-
strained problem are

qn,p − q̂n,p

σ
+ gn,p − λqn,p = 0 (19)

|qn,p|22 − 1 ≤ 0 (20)
λ ≥ 0 (21)

λ(|qn,p|22 − 1) = 0 (22)

where λ is the Lagrange multiplier associated to the norm
constraint. Solving this set of equalities and inequalities
results in

q = (I + σ∂F ∗)−1(q̂)

⇐⇒ qn,p =
q̂n,p − σgn,p

max{|q̂n,p − σgn,p|2, 1}
. (23)

Line 3 in Algorithm 1 of the main paper results from ap-
plying this resolvent operator with σ = σm, to q̂ =
qm + σmKb̄m.

2. Additional figures
In this section we discuss some plots that were left out

of the main paper due to the paper length limitation.

Minimization of the offline multi-view energy. Figure
1 shows the evolution of the minimization of the offline
multi-view FPN estimation energy (Section 4.1 in the main
paper). The plot compares the convergence of the CP al-
gorithm and Adam for some values of the hyperparame-
ters. The top plot displays the PSNR between the estimated
FPN and the real FPN on the y-axis, whereas the bottom
plot shows the evolution of the objective energy being min-
imized (energy (4)). The plot corresponds to the results with
N = 16 synthetic images from the DIV2K dataset (see fig-
ure 3 and table 1 in the main paper). We can see the impact
of the step sizes on the algorithms, and also the different
asymptotic values for CP and Adam.

Online single-view FPN estimation in the presence of
temporally uncorrelated noise. In Section 4.3 of the
main paper we presented some results obtained with the
online single-view rolling window version of our energy.
In one experiment we consider the more realistic case in
which temporal uncorrelated noise is also present (which
we model as AWGN). To denoise the video, we first use
an FPN removal algorithm, and then remove the remain-
ing temporally uncorrelated noise with FastDVDNet [5].
The rightmost plot in figure 4 of the main paper shows the
PSNR obtained between the denoised video and the clean
ground truth. However, it is also interesting to see how does
the temporally uncorrelated noise affect the precision of the

Figure 1. Minimization of the multi-view offline FPN estimation
energy (4) with N = 16 synthetic images of the DIV2K dataset.
Energy parameter λb is fixed at λb = 5 × 10−2. Evolution of the
PSNR (top) and energy E (bottom) with Adam and Chambolle
Pock with different step sizes.

FPN estimation. The plot in figure 2 shows the PSNR be-
tween the estimated FPN and the real FPN. This plot should
be compared with the leftmost plot in figure 4 in the main
paper, where we estimate the FPN for the same sequence,
but this time without temporally uncorrelated noise. We can
see that the temporally uncorrelated noise significantly af-
fects the precision of the estimated FPN. The drop in PSNR
is between 3dBs for our methods. It is smaller for the THPF
methods, suggesting that they are producing a suboptimal
result when FPN is dominant.

3. Comparison with deep learning methods

In this section, we will compare our methods with SNR-
WDNN [2], a more recent deep learning method for column
noise removal from a single image. We used the implemen-
tation of SNRWDNN provided by the authors to train two
networks. One with only Gaussian noise vertical stripes as
used by the authors with a standard deviation of σbc = 5 and
a second one with our noise model, both spatially structured
and spatially independent noise with a standard deviation of
σbc = σbu = 5. The networks were trained on the training



Figure 2. Graph of the evolution of the PSNR between the es-
timated FPN and the ground truth FPN added to the images by
Chambolle Pock, by Bilateral THPF [6], by SLTH THPF [3].
Synthetic additive FPN with standard deviation of 5 and tempo-
rally uncorrelated AWGN with standard deviation of 10 have been
added to the sequence. N is set to 16. For Adam the step size is
equal to 0.5 and λO = 5× 10−2. For CP, τ and σ are equal to 0.1
and λO = 5× 10−2.

dataset of the DIV2K dataset and tested on a small subset of
the validation dataset as the one used in the offline setting
of our method. In the main paper we include a comparison
against SNRWDNN on the use case of FPN removal from
a single sequence. In this section we show a comparison in
the offline multi-image setting, where our method uses 16
frames.

Table 1. Average PSNR results of 16 frames from the DIV2K val-
idation dataset, the same as the ones used in the offline setting.
For column noise, Gaussian noise vertical stripes with a standard
deviation of 5 were added to the image. Full noise refers to our
model, which means simulated additive FPN (no temporal inde-
pendent noise), spatially structured and spatially independent with
a standard deviation of σbc = σbu = 5 were added to the images.
N is set to 16. For Adam the step size is equal to 0.5.

FPN Noisy SNRWDNN [2] Adam
Column noise 34.5 39.4 41.7
Full 29.5 33.2 40.5

Our method is better both quantitatively and qualita-
tively. There is a gap of 2dBs between SNRWDNN and our
method on stripes noise and 7dBs on our full noise model.
Visual results show there are much more artefacts from
SNRWDNN on images (e) and (m), structured noise remain
on the image. This is not surprising since our method is
using N = 16 input frames where as SNRWDNN uses a
single frame.



(a) ground truth (b) noisy (c) ground truth (d) noisy

(e) Denoised Adam (f) Denoised SNRWDNN (g) Denoised Adam (h) Denoised SNRWDNN

(i) Noisy column (j) Denoised Adam (k) Noisy column (l) Denoised Adam

(m) Denoised snrwdnn (n) Denoised snrwdnn

Figure 3. Visual Comparison of some images from the DIV2K dataset. Simulated additive (no temporal independent noise), spatially
structured and spatially independent with a standard deviation of σbc = σbu = 5 was added to frames (b), (c), (d), (e), (f), (g), (h) and
stripe noise with standard deviation of 5 was added to the image (i), (j), (k), (l), (m), (n). (a), (b), (e), (f), (i), (j), (m), are respectively the
ground truth clean image, the noisy image with simulated FPN, the image (b) denoised by our method with Adam, the image (b) denoised
by SNRWDNN, the image with simulated stripes noise, the image (j) denoised by our method with Adam, the image (j) denoised by
SNRWDNN. Images (c), (d), (g), (h), (k), (l) and (n) are the same for another frame from the DIV2K validation dataset.
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