
Supplementary Materials. MoRF: Mobile Realistic
Fullbody Avatars from a Monocular Video.

In the supplementary materials, we show our re-
sults for all 10 people from our self-captured dataset and
one person from PeopleSnapshot. Additionally, we provide
the results we acquired with NeuMan [26] on one of our
10 sequences. We also describe implementation of our
method’s ingredients: texture initialization, automatic
frame filtering, optimization procedure and the architecture
of all of the system components. Finally, we provide the
details of our re-implementation of ANR [52], in particular,
the split optimization technique proposed there. Please
refer to our supplementary video showing avatars in action
to compare temporal stability of MoRF and that of the
baselines.

A. Detailed qualitative results
Figure A1 shows an example of the training scenario that

we used to capture 10 identities for our dataset. Figures A5,
A6, A7, A8, A9 show some of the hold out frames of all
the 10 identities. For each of those we provide the results
produced by MoRF as well as the results of StylePeople and
ANR.

Figure A2 demonstrates the results for NeuMan [26] on
one of our self-captured sequences and of MoRF on one
more identity from PeopleSnapshot (in the main text we
present the results for two others). NeuMan aims to con-
struct a scene model and there is camera movement in their
scenario, whereas in our case the camera is static. We sug-
gest that this difference in capture scenarios is the reason
for the below par results of NeuMan on our data (see Figure
A2 - left).

Figure A1. Example of the training scenario that we use to capture
all 10 training videos. A person slowly shows hands in front of
their torso and makes a full turn in a neutral pose.

B. Detailed method implementation
Neural texture initialization (Section 3.2) Refer to Fig-
ure A3 for the visualization of example channels of the

Figure A2. Additional results: NeuMan on our dataset (left
avatar), MoRF on PeopleSnapshot (right avatar)

spectral texture initialization. By assigning numbers of op-
posite sign (red and blue indicate positive and negative val-
ues correspondingly) to different body parts, all the 16 tex-
ture channels together encode unique spectral coordinates
for each of the points on a mesh surface. This forces the
rendering network to separately learn translations from la-
tent space into color for different body parts. Thus, it slows
down overfitting and increases the effectiveness of the tex-
ture warping network.

Figure A3. Example channels of the spectral neural texture initial-
ization.

Mesh fitting improvements: Automatic frames filtering
Here were describe our heuristic to automatically filter out
the frames with inaccurate mesh fitting (introduced in Sec-
tion 4.1). Having finished the mesh estimation process, we
compare dot-products of normalized pose vectors p for all
the pairs of subsequent frames i and i + 1. If the cosine
distance falls below a certain threshold ξ1, we discard the
i+1-th frame as an outlier. Anticipating that there might be
a series of badly estimated frames, we compare subsequent
frames starting from the i+2-th against the last good frame
i, discarding the frames until the dot-product is above ξ2. In
short, a series of frames {i+ 1, ..., i+ k} is discarded if:

pi

∥pi∥
· pi+1

∥pi+1∥
⩽ ξ1

pi

∥pi∥
· pi+1+j

∥pi+1+j∥
⩽ ξ2 , ∀j < k

(2)



The described heuristic was applied for the pose vectors of
Smplify-X [46] that specify body joints rotations in an axis-
angle format, ξ1 and ξ2 were correspondingly set to 0.9 and
0.8.

Optimization We first extract 468 frames from the train-
ing one-minute videos and run our modified mesh fitting on
them. In particular, we use batch size as large as the whole
training set (468, all fit to a single GPU) as we found this
important for optimization with respect to the shared body
shape parameters and for minimizing such objectives as the
silhouette loss and the temporal loss. For avatar training,
we use batches of the size 6 and train for 500 epochs, except
for the MoRF fine-tuning experiment, where we only train
for 75 epochs. We use Adam [28] optimizer for all learned
parameters. We, however, modify the Adam algorithm for
the neural texture, so that exponential averages do not get
updated for the texels that receive near zero gradients. It
improves avatar stability, because the texels that correspond
to rarely seen body parts (shoes bottom, top of the head) are
less affected by Adam’s momentum. We use the following
weights for our losses:

λL1 = 25 λPercept = 20
λGAN = 1 λTVRGB = 10−4

λTV∆ = 10−4 λ∆�0 = 10
λDice = 25

(3)

We apply pseudo ground truth segmentation masks to fill
the background area of the ground truth images with white
color. We center and crop all the training frames to the train-
ing image resolution, and apply affine transformation aug-
mentations in 2D image space. This includes slight trans-
lation off center, rotations between ±45◦, and scale ×0.7
- ×1.2. We leverage Lanczos filtering during scaling. For
the virtual camera that is used for rasterization of SMPL-X
mesh, we apply the same transformation, but in 3D space.
Unlike rasterization in full-body scale with consequent scal-
ing in the image space, with 3D camera augmentations we
achieve higher level of detail conveyed from the neural tex-
ture when scaling the ground truth up, and avoid image
aliasing when scaling ground truth down.

C. Neural networks design
Further, we provide the exact architectures of the

components. On the design graphs, we use nota-
tion: Conv(ic, oc, k, s, p) for 2D convolutional layers,
MaxPool2d(k, s, p, d) for 2D maximum pooling layers,
ConvTranspose2d(ic, oc, k, s, p) for 2D transposed convo-
lutional layers, Linear(ic, oc) for fully-connected layers;
where ic and oc are numbers of input and output chan-
nels respectively, k is kernel size, s, p and d denote stride,
padding and dilation respectively (the same along both spa-
tial dimensions). 2D Batch Normalization [23] is denoted

by BatchNorm or BN. Adaptive 2D Instance Normaliza-
tion [21] is denoted by AdaIn.

Texture warping network The design of the texture
warping network is presented in Figure A10. A con-
volutional encoder-decoder architecture predicts 2-channel
warping fields (xy-offsets) conditioned on a pose vector p
of size 63 (21 joints, 3 axis rotation angles) and a frame-
specifically learned vector z of size 128. A Multilayer Per-
ceptron translates the condition vectors into mean µ and
standard deviation σ that are applied inside Adaptive In-
stance Normalization [21] layer AdaIn(µ,σ) (in fact we
also add 1 to all predicted values of σ, anticipating that
MLP would predict near zero values). The convolutional
part leverages as input 2D positional encoding E(d, x, y),
consisting of d = 128 channels and spatial dimensions con-
taining sines and cosines of different frequencies computed
from meshgrid pixel coordinates x and y (j ∈ N, j < d/4):

E(4j, x, y) = sin
�
x · 10−4·2j

d

�

E(4j + 1, x, y) = sin
�
y · 10−4·2j

d

�

E(4j + 2, x, y) = cos
�
x · 10−4·2j

d

�

E(4j + 3, x, y) = cos
�
y · 10−4·2j

d

�

(4)

All convolutional layers in the warping network have
bias, LeakyReLU have slope 0.01. For technical reasons,
for a batch of input data we infer warping fields one by
one (as with batch size set to one), thus the network de-
sign does not include any Batch Normalization layers. As
a regularization, for every training sample we project a ras-
terized SMPL-X mesh into the texture space, to collect tex-
ture masks of body area that is seen on the training frames.
During training, we apply the masks to predicted warping
fields to prevent gradients from affecting warping predic-
tions for unseen body parts. Otherwise, for the unseen parts
the warping can be abnormal, because it does not affect the
training predictions, yet it decreases warping stability in the
novel poses.

Neural texture As in DNR [59], we learn a hierarchy
of neural texture levels of sizes: 16 × T × T pixels, for
T ∈ {512, 256, 128, 64, 32, 16, 8}. Compared to a single-
scale texture, the hierarchy yields better temporal stability,
and allows conveying training signal in texels that are rarely
observed during training. For each rendering of the avatars
we apply bilinear upsampling for all the texture levels to a
resolution of 512×512 pixels, then average the levels, infer
a warping field, resample all texels using warping offsets,
and finally superimpose the warped texture on the mesh.

Discriminator networks We follow PatchGAN [24] ar-
chitecture. We individually train 3 identical discriminators



with design as shown in Figure A11. Each processes real or
predicted images in one of the 3 scales: the original resolu-
tion, ×0.5 resolution, ×0.25 resolution. The discriminators
output a 1-channel low resolution image of probabilities,
that can be interpreted as probability of being real of multi-
ple patches on the input image. We apply masks of pseudo-
ground truth segmentation on these probability maps, then
compute the Adversarial loss. Across all discriminators, we
use Batch Normalization layers with affine learned parame-
ters and momentum 0.1, and LeakyReLU with slope 0.2.

Neural rendering network Figure A12 shows designs
of encoder and decoder blocks used in the rendering U-
Net [54] network. Figure A13 shows the assembled neu-
ral renderer design. The encoder part essentially consists of
ResNet18 [18] layers. The decoder part leverages bilinear
upsampling, which compared to nearest upsampling solves
a rare spontaneous visual artifact of learning highly repeti-
tive noisy patterns on the avatar. The output of the decoder
part is translated by two independent shallow convolutional
networks that predict the color image and the segmentation
mask of the avatar. Everywhere in the rendering network
we use Batch Normalization layers with affine learnt pa-
rameters and momentum 0.1. Convolutional layers do not
have bias.

D. Re-implementation of ANR
ANR [52] introduces the split optimization scheme to

reduce texture averaging artifacts that happen due to am-
biguity of correspondence between training images and the
human body meshes fit to them. We re-implement this tech-
nique to integrate it in our pipeline.

Differently to end-to-end training of a rendering network
and a neural texture (as in StylePeople [16]), in ANR the
neural texture is only optimized for a sub-sample of training
images (keyframes). The split optimization process alter-
nates between two types of updates: (a) updates computed
from the keyframes (those affect both the neural texture and
the neural renderer) and (b) updates computed from all the
frames (and affect only the neural renderer).

In our implementation, one minibatch for the step of type
(a) is followed by one minibatch for the step of type (b).
Both updates optimize the full objective as was described
for MoRF in Section 4.3 (as well as for StylePeople). As
the result, for the same number of texture updates, the neu-
ral renderer in ANR receives twice as large number of up-
dates as in StylePeople optimization procedure. Differently
to ANR, we use our rendering network and hierarchy of
neural textures (see Section C). We thus compare the pure
ability of the approaches to handle mesh fitting misalign-
ment as well as equalize the capacity of the methods. Also
notice that ANR originally trains a shared neural renderer
for many subjects, while we train it for a single subject.

In Figure A4 we compare our ANR re-implementation
against the StylePeople baseline on a training sequence of
864 frames, with meshes acquired via SMPLify-X [46].
The training video was recorded with our scenario as de-
scribed in Section 5. We greedily picked 87 keyframes
(10% of all the training frames) according to the proce-
dure described in ANR. Our implementation of the split
optimization strategy exhibits less texture averaging than
StylePeople after the same number of texture updates and
results in a clearer shirt pattern for the shown subject. We
additionally made sure that the shown improvement is not
due to the higher number of renderer updates by qualita-
tively comparing the results obtained after the same number
of renderer updates (and, consequently, twice as small num-
ber of texture updates) as in StylePeople. We thus claim that
our ANR re-implementation is valid and indeed helps com-
pensating SMPLify-X mesh fitting misalignment on com-
paratively long sequences, as opposed to StylePeople that
has no such ability.

To compare ANR, StylePeople and MoRF as shown in
Figure 6 and Table 1, we run our ANR implementation
on our data described in Section 5. For these experiments
we also used 87 keyframes instead of 10% of our training
images (this would be just 49 images) since such a small
sub-sample size could lead to overfitting to the keyframes.
Note that in the experiments shown in Figure 6 and Table
1, meshes were acquired with our mesh fitting procedure
described in Section 4.1.

(a) (b) (c)

Figure A4. (a) Ground truth image. (b) Avatar trained with our
ANR [52] re-implementation. (c) Avatar trained with baseline
StylePeople [16], notice the greater texture averaging.



Ground truth MoRF ANR StylePeople HumanNeRF

01

02

Figure A5. Hold out images with novel poses for identities 01, 02 from our dataset, and corresponding avatar images of different methods.



Ground truth MoRF ANR StylePeople HumanNeRF

03

04

Figure A6. Hold out images with novel poses for identities 03, 04 from our dataset, and corresponding avatar images of different methods.



Ground truth MoRF ANR StylePeople HumanNeRF

05

06

Figure A7. Hold out images with novel poses for identities 05, 06 from our dataset, and corresponding avatar images of different methods.



Ground truth MoRF ANR StylePeople HumanNeRF

07

08

Figure A8. Hold out images with novel poses for identities 07, 08 from our dataset, and corresponding avatar images of different methods.



Ground truth MoRF ANR StylePeople HumanNeRF

09

10

Figure A9. Hold out images with novel poses for identities 09, 10 from our dataset, and corresponding avatar images of different methods.



Positional
encoding

128× 512× 512

Conv (128, 256, 3, 2, 1)

LeakyReLU (0.01)

Conv (256, 512, 3, 2, 1)

AdaIn (µ, σ)

LeakyReLU (0.01)

Conv (512, 512, 1, 1, 1)

LeakyReLU (0.01)

ConvTranspose2d (256, 128, 4, 2, 1)

LeakyReLU (0.01)

ConvTranspose2d (512, 256, 4, 2, 1)

LeakyReLU (0.01)

Conv (128, 2, 1, 1, 1)

D
ec

od
er

Bottleneck

E
nc

od
er

Warping field
2× 512× 512

Linear (512, 1024)

LeakyReLU (0.01)

Linear (256, 512)

LeakyReLU (0.01)

Linear (191, 256)

p

Pose
vector

z

Frame
vector

w

µ
512

σ

512

+1

Figure A10. Design of the texture warping network.

Input RGBA image

Conv (4, 64, 3, 1, 1)

LeakyReLU

Conv (64, 128, 3, 2, 1)

BatchNorm + LeakyReLU

Conv (128, 256, 3, 2, 1)

BatchNorm + LeakyReLU

Conv (256, 512, 3, 1, 1)

BatchNorm + LeakyReLU

Conv (512, 1, 3, 1, 1)

Sigmoid

Probability map

Figure A11. Design of the discriminator (PatchGAN [24]). We
train 3 of those identical models to discriminate quality at the orig-
inal resolution, at 0.5 downscale, and at 0.25 downscale.

Input tensor

Conv (ic, oc, 3, 2, 1)

BatchNorm + ReLU
Conv (oc, oc, 3, 1, 1)

BatchNorm

ReLU

+

C
on

v
(i

c,
oc

,1
,2

,1
)

B
at

ch
N

or
m

Conv (oc, oc, 3, 1, 1)

BatchNorm + ReLU
Conv (oc, oc, 3, 1, 1)

BatchNorm + ReLU

Enc(ic, oc)

Input tensor

Conv (ic, oc, 3, 1, 1)

BatchNorm + ReLU
Conv (oc, oc, 3, 1, 1)

BatchNorm + ReLU

Dec(ic, oc)

Figure A12. Design of the encoder block (Enc, inspired by lay-
ers of ResNet18) and decoder block (Dec) in the neural rendering
network. ic and oc stand for the number of input and output
channels of the block respectively.



16×H ×W
C

onv
(16,64,7,2,3)+

B
N

+
R

eL
U

M
axPool2d

(3,2,1,1)

C
onv

(64,64,3,1,1)+
B

N
+

R
eL

U

C
onv

(64,64,3,1,1)+
B

N

C
onv

(64,64,3,1,1)+
B

N
+

R
eL

U

C
onv

(64,64,3,1,1)+
B

N

E
nc

(64,128)

E
nc

(128,256)

E
nc

(256,512)

U

D
ec

(768,256)

U

D
ec

(384,128)

U

D
ec

(192,64)

U

D
ec

(128,32)

U

D
ec

(32,16)

U

= Concatenate

= Bilinear Upsample

B
N

+
R

eL
U

+
C

onv
(16,16,3,1,1)

B
N

+
R

eL
U

+
C

onv
(16,16,3,1,1)

B
N

+
R

eL
U

+
C

onv
(16,3,3,1,1)

ta
n
h

B
atchN

orm
+

R
eL

U

C
onv

(16,1,3,1,1)

Sigm
oid

Predicted RGB

Predicted mask

Decoder

Encoder

Figure A13. Neural rendering network design, which consists of a U-Net [54] and convolutional heads predicting RGB images and
segmentation masks. The definitions of Enc and Dec blocks are given in Figure A12.


