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Abstract

We provide the following supplementary material:
• (1) Implementation details for EfficientAD, including the training and inference procedure of EfficientAD on the dataset

of an anomaly detection scenario (1.1) and the distillation training of the patch description network (1.2).
• (2) Implementation and configuration details for other evaluated methods.
• (3) Evaluation of the anomaly detection performance of EfficientAD for different distillation backbones.
• (4) Results for additional anomaly detection metrics, such as the area under the precision recall curve.
• (5) Description of our timing methodology and results for additional computational efficiency metrics such as the

number of parameters.
• (6) Qualitative results in the form of anomaly maps generated by EfficientAD and other methods on the evaluated

datasets.
• Anomaly detection results for each method on each of the 32 scenarios from MVTec AD, VisA, and MVTec LOCO in

the per scenario results.json file.

1. Implementation Details for EfficientAD
1.1. Training and Inference

Algorithm 1 describes the training of EfficientAD-S and Algorithm 2 explains the inference procedure. For EfficientAD-M,
replace the architecture of Table 1 with that of Table 2.

Algorithm 1 EfficientAD-S Training Algorithm

Require: A pretrained teacher network T : R3×256×256 → R384×64×64 with an architecture as given in Table 1
Require: A sequence of training images Itrain with Itrain ∈ R3×256×256 for each Itrain ∈ Itrain
Require: A sequence of validation images Ival with Ival ∈ R3×256×256 for each Ival ∈ Ival

1: Randomly initialize a student network S : R3×256×256 → R768×64×64 with an architecture as given in Table 1
2: Randomly initialize an autoencoder A : R3×256×256 → R384×64×64 with an architecture as given in Table 3
3: for c ∈ 1, . . . , 384 do ▷ Compute teacher channel normalization parameters µ ∈ R384 and σ ∈ R384

4: Initialize an empty sequence X ← ( )
5: for Itrain ∈ Itrain do
6: Y ′ ← T (Itrain)
7: X ← X⌢vec(Y ′

c ) ▷ Append the channel output to X
8: end for
9: Set µc to the mean and σc to the standard deviation of the elements of X



10: end for
11: Initialize the Adam [8] optimizer with a learning rate of 10−4 and a weight decay of 10−5 for the parameters of S and A
12: for iteration = 1, . . . , 70 000 do
13: Choose a random training image Itrain from Itrain
14: Y ′ ← T (Itrain) ▷ Forward pass of the student–teacher pair
15: Compute the normalized teacher output Ŷ given by Ŷc = (Y ′

c − µc)σ
−1
c for each c ∈ {1, . . . , 384}

16: Y S ← S(Itrain)
17: Set Y ST ∈ R384×64×64 to the first 384 channels of Y S ∈ R768×64×64

18: Compute the squared difference between Ŷ and Y ST for each tuple (c, w, h) as DST
c,w,h = (Ŷc,w,h − Y ST

c,w,h)
2

19: Compute the 0.999-quantile of the elements of DST, denoted by dhard
20: Compute the loss Lhard as the mean of all DST

c,w,h ≥ dhard
21: Choose a random pretraining image P ∈ R3×256×256 from ImageNet [13]
22: Compute the loss LST = Lhard + (384 · 64 · 64)−1

∑384
c=1 ∥S(P )c∥2F

23: Randomly choose an augmentation index iaug ∈ {1, 2, 3} ▷ Augment Itrain for A using torchvision [10]
24: Sample an augmentation coefficient λ from the uniform distribution U(0.8, 1.2)
25: if iaug == 1 then Iaug ← torchvision.transforms.functional pil.adjust brightness(Itrain, λ)
26: else if iaug == 2 then Iaug ← torchvision.transforms.functional pil.adjust contrast(Itrain, λ)
27: else if iaug == 3 then Iaug ← torchvision.transforms.functional pil.adjust saturation(Itrain, λ)
28: end if
29: Y A ← A(Iaug) ▷ Forward pass of the autoencoder–student pair
30: Y ′ ← T (Iaug)

31: Compute the normalized teacher output Ŷ given by Ŷc = σ−1
c (Y ′

c − µc) for each c ∈ {1, . . . , 384}
32: Y S ← S(Iaug)
33: Set Y STAE ∈ R384×64×64 to the last 384 channels of Y S ∈ R768×64×64

34: Compute the squared difference between Ŷ and Y A for each tuple (c, w, h) as DAE
c,w,h = (Ŷc,w,h − Y A

c,w,h)
2

35: Compute the squared difference between Y A and Y STAE for each tuple (c, w, h) as DSTAE
c,w,h = (Y A

c,w,h − Y STAE
c,w,h )2

36: Compute the loss LAE as the mean of all elements DAE
c,w,h of DAE

37: Compute the loss LSTAE as the mean of all elements DSTAE
c,w,h of DSTAE

38: Compute the total loss Ltotal = LST + LAE + LSTAE ▷ Backward pass
39: Update the union of the parameters of S and A, denoted by ϕ, using the gradient∇ϕLtotal

40: if iteration > 66 500 then
41: Decay the learning rate to 10−5

42: end if
43: end for
44: Initialize empty sequences XST ← ( ) and XAE ← ( ) ▷ Quantile-based map normalization on validation images
45: for Ival ∈ Ival do
46: Y ′ ← T (Ival), Y S ← S(Ival), Y A ← A(Ival)
47: Compute the normalized teacher output Ŷ given by Ŷc = (Y ′

c − µc)σ
−1
c for each c ∈ {1, . . . , 384}

48: Split the student output into Y ST ∈ R384×64×64 and Y STAE ∈ R384×64×64 as above
49: Compute the squared difference DST

c,w,h = (Ŷc,w,h − Y ST
c,w,h)

2 for each tuple (c, w, h)

50: Compute the squared difference DSTAE
c,w,h = (Y A

c,w,h − Y STAE
c,w,h )2 for each tuple (c, w, h)

51: Compute the anomaly maps MST = 384−1
∑384

c=1 D
ST
c and MAE = 384−1

∑384
c=1 D

STAE
c

52: Resize MST and MAE to 256× 256 pixels using bilinear interpolation
53: XST ← XST

⌢vec(MST) ▷ Append to the sequence of local anomaly scores
54: XAE ← XAE

⌢vec(MAE) ▷ Append to the sequence of global anomaly scores
55: end for
56: Compute the 0.9-quantile qSTa and the 0.995-quantile qSTb of the elements of XST.
57: Compute the 0.9-quantile qAE

a and the 0.995-quantile qAE
b of the elements of XAE.

58: return T , S, A, µ, σ, qSTa , qSTb , qAE
a , and qAE

b



Algorithm 2 EfficientAD Inference Procedure

Require: T , S, A, µ, σ, qSTa , qSTb , qAE
a , and qAE

b , as returned by Algorithm 1
Require: Test image Itest ∈ R3×256×256

1: Y ′ ← T (Itest), Y S ← S(Itest), Y A ← A(Itest)
2: Compute the normalized teacher output Ŷ given by Ŷc = (Y ′

c − µc)σ
−1
c for each c ∈ {1, . . . , 384}

3: Split the student output into Y ST ∈ R384×64×64 and Y STAE ∈ R384×64×64 as above
4: Compute the squared difference DST

c,w,h = (Ŷc,w,h − Y ST
c,w,h)

2 for each tuple (c, w, h)

5: Compute the squared difference DSTAE
c,w,h = (Y A

c,w,h − Y STAE
c,w,h )2 for each tuple (c, w, h)

6: Compute the anomaly maps MST = 384−1
∑384

c=1 D
ST
c and MAE = 384−1

∑384
c=1 D

STAE
c

7: Resize MST and MAE to 256× 256 pixels using bilinear interpolation
8: Compute the normalized M̂ST = 0.1(MST − qSTa )(qSTb − qSTa )−1

9: Compute the normalized M̂AE = 0.1(MAE − qAE
a )(qAE

b − qAE
a )−1

10: Compute the combined anomaly map M = 0.5M̂ST + 0.5M̂AE

11: Compute the image-level score as mimage = maxi,j Mi,j

12: return M and mimage

Layer Name Stride Kernel Size Number of Kernels Padding Activation
Conv-1 1×1 4×4 128 3 ReLU

AvgPool-1 2×2 2×2 128 1 -
Conv-2 1×1 4×4 256 3 ReLU

AvgPool-2 2×2 2×2 256 1 -
Conv-3 1×1 3×3 256 1 ReLU
Conv-4 1×1 4×4 384 0 -

Table 1. Patch description network architecture of the teacher network for EfficientAD-S. The student network has the same architecture,
but 768 kernels instead of 384 in the Conv-4 layer. A padding value of 3 means that three rows, or columns respectively, of zeros are
appended at each border of an input feature map.

Layer Name Stride Kernel Size Number of Kernels Padding Activation
Conv-1 1×1 4×4 256 3 ReLU

AvgPool-1 2×2 2×2 256 1 -
Conv-2 1×1 4×4 512 3 ReLU

AvgPool-2 2×2 2×2 512 1 -
Conv-3 1×1 1×1 512 0 ReLU
Conv-4 1×1 3×3 512 1 ReLU
Conv-5 1×1 4×4 384 0 ReLU
Conv-6 1×1 1×1 384 0 -

Table 2. Patch description network architecture of the teacher network for EfficientAD-M. The student network has the same architecture,
but 768 kernels instead of 384 in the Conv-5 and Conv-6 layers. A padding value of 3 means that three rows, or columns respectively, of
zeros are appended at each border of an input feature map.

Comments on Algorithm 1 and Algorithm 2:

• We use the default initialization method of PyTorch [10] (version 1.12.0) for the convolutional layers.

• We apply the teacher and the student to both the original and the augmented training image. That is necessary because
the student–teacher model is trained without augmentation, while the autoencoder is trained with augmentation. During
inference, we do not need these second forward passes because images are not augmented at test time.

• The sizes of the images of MVTec AD [2, 4], VisA [18], and MVTec LOCO [3] differ. We resize each input image to
256× 256 and resize the anomaly map M back to the original image size using bilinear interpolation.

• We use a batch size of one.



Layer Name Stride Kernel Size Number of Kernels Padding Activation
EncConv-1 2×2 4×4 32 1 ReLU
EncConv-2 2×2 4×4 32 1 ReLU
EncConv-3 2×2 4×4 64 1 ReLU
EncConv-4 2×2 4×4 64 1 ReLU
EncConv-5 2×2 4×4 64 1 ReLU
EncConv-6 1×1 8×8 64 0 -
Bilinear-1 Resizes the 1×1 input features maps to 3×3

DecConv-1 1×1 4×4 64 2 ReLU
Dropout-1 Dropout rate = 0.2
Bilinear-2 Resizes the 4×4 input features maps to 8×8

DecConv-2 1×1 4×4 64 2 ReLU
Dropout-2 Dropout rate = 0.2
Bilinear-3 Resizes the 9×9 input features maps to 15×15

DecConv-3 1×1 4×4 64 2 ReLU
Dropout-3 Dropout rate = 0.2
Bilinear-4 Resizes the 16×16 input features maps to 32×32

DecConv-4 1×1 4×4 64 2 ReLU
Dropout-4 Dropout rate = 0.2
Bilinear-5 Resizes the 33×33 input features maps to 63×63

DecConv-5 1×1 4×4 64 2 ReLU
Dropout-5 Dropout rate = 0.2
Bilinear-6 Resizes the 64×64 input features maps to 127×127

DecConv-6 1×1 4×4 64 2 ReLU
Dropout-6 Dropout rate = 0.2
Bilinear-7 Resizes the 128×128 input features maps to 64×64

DecConv-7 1×1 3×3 64 1 ReLU
DecConv-8 1×1 3×3 384 1 -

Table 3. Network architecture of the autoencoder for EfficientAD-S and EfficientAD-M. Layers named “EncConv” and “DecConv” are
standard 2D convolutional layers.

• We use the image normalization of the pretrained models of torchvision [10]. That means we subtract 0.485, 0.456,
and 0.406 from the R, G, and B channel, respectively, for each input image and divide the channels by 0.229, 0.224,
and 0.225, respectively. We perform this normalization directly before applying a network to an image, i.e., after
augmentation. At test time, this can also be done by adjusting the weights and bias of the first convolutional layer of a
network accordingly.

• The parameters of the autoencoder A are not only affected by the gradient of LAE, but also by the gradient of LSTAE.

• We obtain an image P ∈ R3×256×256 from ImageNet by choosing a random image, resizing it to 512×512, converting
it to gray scale with a probability of 0.3, and cropping the center 256× 256 pixels.

1.2. Distillation

In the following, we describe how to distill the WideResNet-101 [16] features used by PatchCore [11] into the teacher
network T . The distillation training algorithm is presented in Algorithm 3. The process in analogous for other pretrained
feature extractors.

There are only few requirements regarding the output shape of the feature extractor. The feature extractors used by
PatchCore output features of shape 384 × 64 × 64 for an input image size of 512 × 512 pixels. Therefore, the teacher and
the autoencoder also output 384 channels (as described in Tables 1 to 3). If a pretrained feature extractor outputs a different
number of channels, this default of 384 output channels of the teacher and the autoencoder can be adjusted flexibly. During
distillation, we resize input images to 512× 512 for the pretrained feature extractor and to 256× 256 for the teacher network
that is being trained. This results in an output shape of 384× 64× 64 for the teacher network as well. If a feature extractor
outputs feature maps of a size other than 64 × 64, we can adjust its input image size to achieve an output feature map size



of 64 × 64. Alternatively, we can adjust the input image size of the teacher network because it is fully convolutional and
operates separately on patches of size 33× 33. A feature map size of 53× 71, for example, can be achieved by applying the
teacher network to images of size 212× 284.

We use a batch size of 16 for the distillation training and use ImageNet [13] as the pretraining dataset. We use the official
implementation of PatchCore 1 and its default values if not stated otherwise. We use the feature postprocessing of PatchCore
as well, which includes pooling features from two layers and projecting each feature vector to a reduced dimensionality of 384
dimensions, as described in [11]. The features used for our distillation training are the final features used by PatchCore, i.e.,
those given to the coreset subsampling algorithm when training PatchCore. We denote the WideResNet-101-based feature
extractor, including the feature postprocessing, as Ψ : R3×512×512 → R384×64×64.

Algorithm 3 Distillation Training Algorithm

Require: A pretrained feature extractor Ψ : R3×W×H → R384×64×64.
Require: A sequence of distillation training images Idist

1: Randomly initialize a teacher network T : R3×256×256 → R384×64×64 with an architecture as given in Table 1 or 2
2: for c ∈ 1, . . . , 384 do ▷ Compute feature extractor channel normalization parameters µΨ ∈ R384 and σΨ ∈ R384

3: Initialize an empty sequence X ← ( )
4: for iteration = 1, 2, . . . , 10 000 do
5: Choose a random training image Idist from Idist
6: Convert Idist to gray scale with a probability of 0.1
7: Compute IΨdist by resizing Idist to 3×W ×H using bilinear interpolation
8: Y Ψ ← Ψ(IΨdist)
9: X ← X⌢vec(Y Ψ

c ) ▷ Append the channel output to X
10: end for
11: Set µΨ

c to the mean and σΨ
c to the standard deviation of the elements of X

12: end for
13: Initialize the Adam [8] optimizer with a learning rate of 10−4 and a weight decay of 10−5 for the parameters of T
14: for iteration = 1, . . . , 60 000 do
15: Lbatch ← 0
16: for batch index = 1, . . . , 16 do
17: Choose a random training image Idist from Idist
18: Convert Idist to gray scale with a probability of 0.1
19: Compute IΨdist by resizing Idist to 3×W ×H using bilinear interpolation
20: Compute I ′dist by resizing Idist to 3× 256× 256 using bilinear interpolation
21: Y Ψ ← Ψ(IΨdist)

22: Compute the normalized features Ŷ Ψ given by Ŷ Ψ
c = (Y Ψ

c − µΨ
c )(σ

Ψ
c )

−1 for each c ∈ {1, . . . , 384}
23: Y ′ ← T (I ′dist)

24: Compute the squared difference between Ŷ Ψ and Y ′ for each tuple (c, w, h) as Ddist
c,w,h = (Ŷ Ψ

c,w,h − Y ′
c,w,h)

2

25: Compute the loss Ldist as the mean of all elements Ddist
c,w,h of Ddist

26: Lbatch ← Lbatch + Ldist

27: end for
28: Lbatch ← 16−1Lbatch

29: Update the parameters of T , denoted by θ, using the gradient ∇θLbatch

30: end for
31: return T

Comments on Algorithm 3: We use the image normalization of the pretrained models of torchvision [10]. That means we
subtract 0.485, 0.456, and 0.406 from the R, G, and B channel, respectively, for each input image and divide the channels
by 0.229, 0.224, and 0.225, respectively. We perform this normalization directly before applying a network to an image, i.e.,
after augmentation.

1https://github.com/amazon-science/patchcore-inspection/tree/6a9a281fc34cb1b13c54b318f71e6f1f371536bb



2. Implementation Details for Other Evaluated Methods
In the following, we provide the implementation and configuration details for Asymmetric Student–Teacher (AST) [12],

DSR [17], FastFlow [15], GCAD [3], PatchCore [11], SimpleNet [9], and Student–Teacher [5].

2.1. AST

We use the official implementation of Rudolph et al. [12] 2. We use the default configuration without modifications, but
are not able to fully reproduce the results reported in the AST paper. The AST paper reports a mean image-level detection
AU-ROC of 99.2 % on MVTec AD, averaged across five runs. We obtain an AU-ROC of 98.9 % across five runs.

2.2. DSR

We use the official implementation of Zavrtanik et al. [17] 3. We use the default configuration without modifications for
reproducing the results on MVTec AD. We obtain a mean image-level detection AU-ROC of 98.1 % on MVTec AD, which
is close to the 98.2 % reported by the authors. On the scenarios from VisA, which contain more training images than those
of MVTec AD, we change the number of epochs to 50 to keep the total number of training iterations in a similar range.

2.3. FastFlow

We use the implementation of Akcay et al. [1] 4. We use the FastFlow version based on the WideResNet-50-2 feature
extractor, as it is similar to the WideResNet used by PatchCore, SimpleNet, and our method. We use the default configuration,
but disable early stopping, i.e., the scenario-specific tuning of the training duration on test images. Instead, we choose a
constant training duration (200 steps) that works well on average for all evaluated datasets.

2.4. GCAD

We implement GCAD as described by Bergmann et al. [3]. We are able to reproduce the results reported by the authors,
but adapt GCAD to a configuration that performs better in our experiments. GCAD consists of an ensemble of two anomaly
detection models that use different feature extractors. The first member uses a feature extractor that operates on patches of
size 17 × 17 while the feature extractor used by the second member operates on patches of size 33 × 33. We find that the
second member performs better on average than the combined ensemble and therefore report the results for this member in
the main paper. On the logical anomalies of MVTec LOCO, the single model scores an image-level detection AU-ROC of
83.9 %, while the AU-ROC of the ensemble model used by the authors is 86.0 %. The overall anomaly detection performance
on MVTec LOCO, however, stays the same.

2.5. PatchCore

We use the official implementation of Roth et al. [11] 5 and are able to reproduce the results reported for MVTec AD.
As described in the main paper, we disable the cropping of the center 76.6 % of input images for a fair comparison. For the
single model variant of PatchCore, we use the configuration of PatchCore for which the authors report the lowest latency.
Specifically, this means setting the coreset subsampling ratio to 1 %, the image size to 224 × 224 pixels, and the feature
extraction backbone to a WideResNet-101. For the ensemble variant, we use the configuration for which the authors report
the best image-level detection AU-ROC on MVTec AD. We use a WideResNet-101, a ResNeXT-101 [14], and a DenseNet-
201 [7] as backbones, set the coreset subsampling ratio to 1 %, and use images of size 320× 320 pixels.

2.6. SimpleNet

We use the official implementation of Liu et al. [9] 6 and are able to reproduce the reported results. As explained in the
main paper, we disable the scenario-specific tuning of the training duration on test images for a fair comparison.

2.7. Student–Teacher

We implement the original multi-scale Student–Teacher (S–T) method as described by Bergmann et al. [5]. We use the
default hyperparameter settings without modification. Our implementation achieves better anomaly localization results on
MVTec AD than those reported by the authors but matches those reported in [2].

2https://github.com/marco-rudolph/AST/tree/1a157973a0e2cb23b6fbb853db8ae43537ab2568
3https://github.com/VitjanZ/DSR_anomaly_detection/tree/672bfb81434fd2a6c5ef00db858cef8834c54f28
4https://github.com/openvinotoolkit/anomalib/tree/e66a17c86489486f6bbd5099366383e8660923fd
5https://github.com/amazon-science/patchcore-inspection/tree/6a9a281fc34cb1b13c54b318f71e6f1f371536bb
6https://github.com/DonaldRR/SimpleNet/tree/35bf32292995842a4277a7c93431430129efccb5



3. Robustness to the Distillation Backbone Architecture
In the main paper, we use the features from a WideResNet-101 for training a teacher network in Algorithm 3. The

default configuration of PatchCore uses the same features. In Table 4, we evaluate the anomaly detection performance for
other backbones. Specifically, we evaluate the two additional backbones that PatchCoreEns uses, i.e., a ResNeXt-101 and a
DenseNet-201. On the three evaluated dataset collections, the anomaly detection performance of EfficientAD is similarly
robust to the choice of the backbone in comparison to the robustness of PatchCore. On MVTec AD, both methods perform
very similarly across backbones, while their performance on MVTec LOCO varies more. On VisA, the gap between the
structural anomaly detection performance of PatchCore and that of EfficientAD becomes evident.

Method WideResNet-101 ResNeXt-101 DenseNet-201

M
V

Te
c

A
D

PatchCore 98.7 98.8 98.7
EfficientAD-S 98.8 98.9 98.8
EfficientAD-M 99.1 99.0 99.2

M
V

Te
c

L
O

C
O PatchCore 80.3 78.9 76.5

EfficientAD-S 90.0 90.1 90.6
EfficientAD-M 90.7 89.9 88.3

V
is

A PatchCore 94.3 95.2 94.8
EfficientAD-S 97.5 97.3 97.1
EfficientAD-M 98.1 98.0 97.7

Table 4. Mean anomaly detection AU-ROC percentages for different backbones. For EfficientAD, each listed architecture is used as the
distillation backbone in Algorithm 3. The “WideResNet-101” column contains the results reported in the main paper.

4. Additional Anomaly Detection Metrics
In this section, we report the results for additional anomaly detection metrics. Section 4.1 evaluates image-level anomaly

detection metrics. Section 4.2 evaluates pixel-level anomaly localization metrics.
For per-scenario evaluation results, see the per scenario results.json file in the supplementary material.
Following the official MVTec LOCO evaluation script 7, we evaluate each performance metric separately on the structural

and on the logical anomalies of MVTec LOCO. Then, we compute the mean of the two scores to compute the overall
performance of a method on a scenario of MVTec LOCO.

4.1. Anomaly Detection

In the main paper, we evaluate the image-level anomaly detection performance with the area under the ROC curve (AU-
ROC). Here, we report the results for the area under the precision recall curve (AU-PRC) as well. For information on the
differences between the AU-ROC and the AU-PRC, we refer to Davis and Goadrich [6].

Table 5 shows the anomaly detection performance of each method measured with the AU-ROC. This table contains the
results reported in the main paper. Table 6 shows the results for the image-level AU-PRC.

4.2. Anomaly Localization

To evaluate the anomaly localization performance, we use the area under the PRO curve (AU-PRO) up to a false positive
rate (FPR) of 30 % in the main paper, as recommended by [2]. The AU-PRO metric [2] is similar to the pixel-wise AU-ROC.
The difference is that the pixel-wise AU-ROC gives each ground truth defect pixel the same weight in its computation. The
AU-PRO gives each ground truth defect region the same weight. The FPR limit of 30 % is due to the fact that a method that
segments, on average, more than 30 % of defect-free pixels as anomalous is of limited use.

Table 7 contains the results reported in the main paper. Here, we report the AU-PRO for an FPR limit of 5 % as well
in Table 8. For comparison, we also report the pixel-wise AU-ROC for an FPR limit of 5 % in Table 9. Furthermore, we
evaluate the pixel-wise AU-PRC as an additional segmentation, and thus, localization performance metric in Table 10. The
per scenario results.json file in the supplementary material also contains the AU-PRO and pixel-wise AU-ROC
results for an FPR limit of 100 %.

7https://www.mvtec.com/company/research/datasets/mvtec-loco



Method
MAD
Mean

VisA
Mean

LOCO
Structural

LOCO
Logical

LOCO
Mean

Overall
Mean

GCAD 89.1 83.7 82.7 83.9 83.3 85.4
SimpleNet 98.2 87.9 83.7 71.5 77.6 87.9

S–T 93.2 94.6 88.3 66.5 77.4 88.4
FastFlow 96.9 93.9 82.9 75.5 79.2 90.0

DSR 98.1 91.8 90.2 75.0 82.6 90.8
PatchCore 98.7 94.3 84.8 75.8 80.3 91.1

PatchCoreEns 99.3 97.7 87.7 71.0 79.4 92.1
AST 98.9 94.9 87.1 79.7 83.4 92.4

EfficientAD-S 98.8 97.5 94.1 85.8 90.0 95.4
EfficientAD-M 99.1 98.1 94.7 86.8 90.7 96.0

Table 5. Mean anomaly detection AU-ROC percentages per dataset collection. For EfficientAD, we report the mean of five runs.

Method
MAD
Mean

VisA
Mean

LOCO
Structural

LOCO
Logical

LOCO
Mean

Overall
Mean

GCAD 95.7 87.1 81.0 84.9 83.0 88.6
SimpleNet 98.5 90.1 82.5 73.5 78.0 88.9

S–T 95.7 94.6 87.9 70.7 79.3 89.9
FastFlow 95.3 94.7 79.5 76.2 77.9 89.3

DSR 98.1 93.8 88.2 76.6 82.4 91.4
PatchCore 98.9 95.2 84.6 77.7 81.2 91.8

PatchCoreEns 99.0 97.8 88.3 74.7 81.5 92.8
AST 98.9 95.3 84.5 80.5 82.5 92.2

EfficientAD-S 98.7 97.5 93.6 86.2 89.9 95.4
EfficientAD-M 98.9 98.0 93.9 86.8 90.3 95.7

Table 6. Mean anomaly detection AU-PRC percentages per dataset collection. For EfficientAD, we report the mean of five runs.

Method
MAD
Mean

VisA
Mean

LOCO
Structural

LOCO
Logical

LOCO
Mean

Overall
Mean

GCAD 91.0 83.7 89.5 89.4 89.5 88.0
SimpleNet 89.6 68.9 60.6 68.6 64.6 74.4

S–T 92.4 93.0 90.8 76.4 83.6 89.7
FastFlow 92.5 86.8 84.2 76.5 80.3 86.5

DSR 90.8 68.1 81.3 72.3 76.8 78.6
PatchCore 92.7 79.7 64.3 76.6 70.4 80.9

PatchCoreEns 95.6 79.3 62.0 72.6 67.3 80.7
AST 81.2 81.5 75.4 62.6 69.0 77.2

EfficientAD-S 93.1 93.1 92.6 90.1 91.3 92.5
EfficientAD-M 93.5 94.0 93.7 91.3 92.5 93.3

Table 7. Mean anomaly localization performance per method and dataset collection, measured with the AU-PRO up to a FPR of 30 %. For
EfficientAD, we report the mean of five runs.

5. Timing Methodology and Additional Computational Efficiency Metrics
In the following, we describe how we measure the latency and the throughput of each anomaly detection method. Latency

refers to the inference runtime, i.e., how long it takes a method to generate the anomaly detection result for a single image.
Throughput refers to how many images can be processed per second when allowing a batched processing of images. In set-
tings in which latency constraints are fulfilled or not present, a high throughput is relevant for using computational resources
efficiently and thus for reducing the economic cost of an application.

All evaluated methods are implemented in PyTorch. All of them, including the nearest neighbor search of PatchCore, run
faster on each of the GPUs in our experimental setup than on a CPU. We therefore execute each method on a GPU. For a test
image, our timing begins with the transfer of the image from the CPU to the GPU. We include the transfer to regard the benefit



Method
MAD
Mean

VisA
Mean

LOCO
Structural

LOCO
Logical

LOCO
Mean

Overall
Mean

GCAD 68.8 52.6 68.8 67.1 68.0 63.1
SimpleNet 61.8 37.7 36.6 36.1 36.3 45.3

S–T 73.4 75.0 75.6 49.7 62.6 70.4
FastFlow 71.6 63.4 64.5 49.1 56.8 63.9

DSR 78.9 49.5 67.1 49.8 58.5 62.3
PatchCore 68.6 49.4 37.9 41.5 39.7 52.6

PatchCoreEns 79.5 55.1 37.8 35.3 36.5 57.1
AST 42.1 48.0 50.1 35.3 42.7 44.3

EfficientAD-S 78.2 73.4 80.8 74.8 77.8 76.5
EfficientAD-M 78.4 75.9 83.2 76.5 79.8 78.0

Table 8. Mean anomaly localization performance per method and dataset collection, measured with the AU-PRO up to a FPR of 5 %. For
EfficientAD, we report the mean of five runs.

Method
MAD
Mean

VisA
Mean

LOCO
Structural

LOCO
Logical

LOCO
Mean

Overall
Mean

GCAD 72.1 73.1 73.1 32.0 52.5 65.9
SimpleNet 67.9 57.1 36.4 22.1 29.2 51.4

S–T 74.3 82.7 69.8 20.6 45.2 67.4
FastFlow 72.1 78.9 63.4 33.7 48.6 66.5

DSR 76.1 66.5 66.0 25.5 45.7 62.8
PatchCore 74.1 65.0 43.5 24.1 33.8 57.6

PatchCoreEns 79.4 65.7 38.7 20.4 29.6 58.2
AST 41.1 67.4 52.4 30.9 41.7 50.1

EfficientAD-S 79.7 86.3 80.6 33.8 57.2 74.4
EfficientAD-M 79.4 86.9 82.1 35.3 58.7 75.0

Table 9. Mean anomaly localization performance per method and dataset collection, measured with the AU-ROC up to a FPR of 5 %. For
EfficientAD, we report the mean of five runs.

Method
MAD
Mean

VisA
Mean

LOCO
Structural

LOCO
Logical

LOCO
Mean

Overall
Mean

GCAD 59.3 27.8 41.4 38.7 40.1 42.4
SimpleNet 51.5 22.6 11.9 29.3 20.6 31.6

S–T 59.9 36.2 43.5 27.4 35.4 43.8
FastFlow 57.6 33.4 35.1 41.3 38.2 43.1

DSR 69.2 41.1 50.4 32.7 41.5 50.6
PatchCore 57.6 27.8 17.8 32.5 25.2 36.8

PatchCoreEns 64.1 28.3 15.1 28.9 22.0 38.2
AST 29.7 22.9 17.0 35.6 26.3 26.3

EfficientAD-S 65.9 40.4 54.0 40.2 47.1 51.1
EfficientAD-M 63.8 40.8 51.9 42.0 46.9 50.5

Table 10. Mean anomaly localization performance per method and dataset collection, measured with the pixel-wise AU-PRC. For
EfficientAD, we report the mean of five runs.

of a method that would run exclusively on a CPU. Our timing stops when the anomaly detection result, which for all evaluated
methods is an anomaly map, is available on the CPU. For each method, we remove unnecessary parts for the timing, such as
the computation of losses during inference, and use float16 precision for all networks. Switching from float32 to float16 for
the inference of EfficientAD does not change the anomaly detection results for the 32 anomaly detection scenarios evaluated
in this paper. In latency-critical applications, padding in the PDN architecture of EfficientAD can be disabled. This speeds
up the forward pass of the PDN architecture by 80 µs without impairing the detection of anomalies. We time EfficientAD
without padding and therefore report the anomaly detection results for this setting in the experimental results of the main
paper and the supplementary material.

We perform 1000 forward passes as warm up and report the mean runtime of the following 1000 forward passes. For



the latency, we report the average runtime of 1000 forward passes with a batch size of 1. We compute the throughput by
dividing 16 000 by the sum of the runtimes of 1000 forward passes with a batch size of 16. In addition to the latency and
the throughput, we report the number of parameters, the number of floating point operations (FLOPs), and the GPU memory
consumption for each method in Table 11. Analogously to the latency, we measure these metrics for the processing of one
image during inference and report the mean of 1000 forward passes. The number of parameters and the FLOPs remain
constant across forward passes, while the GPU memory consumption varies slightly (less than one MB difference between
forward passes).

Method
Detect.

AU-ROC
Segment.
AU-PRO

Latency
[ms]

Throughput
[img / s]

Number of
Parameters [×106]

FLOPs
[×109]

GPU Memory
[MB]

GCAD 85.4 88.0 11 121 65 416 555
SimpleNet 87.9 74.4 12 194 73 38 508

S–T 88.4 89.7 75 16 26 4468 1077
FastFlow 90.0 86.5 17 120 92 85 404

DSR 90.8 78.6 17 104 40 267 314
PatchCore 91.1 80.9 32 76 83 + 3 41 + kNN 637 + kNN

PatchCoreEns 92.1 80.7 148 13 150 + 8 159 + kNN 1335 + kNN
AST 92.4 77.2 53 41 154 199 618

EfficientAD-S 95.4
(± 0.06)

92.5
(± 0.05)

2.2
(± 0.01)

614
(± 2)

8
(± 0)

76
(± 0)

100
(± 0)

EfficientAD-M 96.0
(± 0.09)

93.3
(± 0.04)

4.5
(± 0.01)

269
(± 1)

21
(± 0)

235
(± 0)

161
(± 0)

Table 11. Extension of Table 1 in the main paper by additional computational efficiency metrics measured on a NVIDIA RTX A6000 GPU.
For EfficientAD, we report the mean and standard deviation of five runs. For PatchCore, we report the computational requirements of the
feature extraction during inference separately from the nearest neighbor search.

Technical Details For methods that use features from hidden layers of a pretrained network, we exclude the layers that
are not required for computing these features, i.e., classification heads etc. We measure the number of FLOPs using the
official profiling framework of PyTorch [10] (version 1.12.0). Specifically, we wrap the inference function of a method into
a call of with torch.profiler.profile(with flops=True) as prof:. For measuring the GPU memory
consumption, we also use the official profiling framework of PyTorch. We obtain the peak of the reserved GPU memory
during inference with torch.cuda.memory stats()[’reserved bytes.all.peak’].

Interpretability of Efficiency Metrics In the main paper, we focus on the latency and the throughput of the evaluated
anomaly detection methods. The number of parameters and the number of FLOPs are often used as proxy metrics for the
runtime, but can be misleading. For example, the number of parameters of FastFlow in Table 11 is roughly 2.5 times larger
than that of S–T. Yet, the latency of FastFlow is substantially lower and its throughput is 6.5 times higher.

With 4.5 trillion FLOPs, S–T exceeds the FLOPs of other methods by a large margin. The high number of FLOPs, however,
comes from the fact that S–T uses convolutions that operate on large feature maps. This means that these convolutions can
be parallelized well on a GPU, while implementing them naively on a CPU would indeed cause a prohibitively long runtime.
FLOPs measurements do not account for this, because they do not consider how well operations can be parallelized. The
number of FLOPs can therefore be an unreliable metric for efficiency. For example, the number of FLOPs of S–T is more
than 2000 % higher than that of AST, but the latency is only 42 % higher.

The GPU memory footprint of a method can theoretically be reduced drastically by freeing obsolete GPU memory seg-
ments after each layer’s execution during a forward pass. In the extreme case, one could even directly free the memory of
individual input activation values directly after the output activation of a neuron in a convolutional layer has been computed.
This, however, would worsen the runtime of a forward pass, which generally improves when reserved GPU memory segments
can be reused. Therefore, the GPU memory footprint of a method needs to be reported and analyzed jointly with the latency
and throughput. We focus on the GPU memory required for achieving the reported latency and throughput and therefore
measure the peak of the reserved GPU memory during a forward pass.



PatchCore For PatchCore, we distinguish between the backbones used to compute features and the kNN algorithm itself.
For example, the part of the WideResNet-101 backbone until the layer used for computing features has 83 million parameters.
During training, PatchCore computes the feature vectors of all training images. The coreset subsampling phase of PatchCore
reduces the number of feature vectors to 1 % of the computed feature vectors. These are then indexed and stored in GPU
memory to enable a fast search for nearest neighbors during inference. This, however, means that the number of parameters,
the FLOPs, and the GPU memory footprint of PatchCore depend on the training images. We therefore benchmark PatchCore
on the “cashew” scenario of VisA, which contains 450 training images and is thus closest to the average 439 training images
of the 32 scenarios of MVTec AD, VisA, and MVTec LOCO. We do not report the FLOPs and the GPU memory consumption
of the kNN search, as we were not able to measure it with the kNN library used by the official PatchCore implementation.
The number of parameters of the kNN search is given by the number of values stored in the GPU memory during inference.
In the case of PatchCoreEns, for example, the search database contains 8 million values.

Latency per GPU In Table 12, we provide the values for Figure 6 in the main paper.

Method RTX A6000 RTX A5000 Tesla V100 RTX 3080 RTX 2080 Ti
EfficientAD-S 2.2 2.5 3.9 3.8 4.5
EfficientAD-M 4.5 5.3 6.3 7.0 7.6

GCAD 10.7 11.7 12.9 13.7 18.0
SimpleNet 12.0 13.3 19.2 18.1 21.9
FastFlow 16.5 17.1 26.1 27.5 31.0

DSR 17.2 18.0 24.8 24.6 34.5
PatchCore 32.0 31.5 47.1 41.1 53.2

AST 53.1 53.4 75.6 82.3 87.1
S–T 74.7 81.0 82.2 99.6 121.7

PatchCoreEns 147.6 145.0 229.2 189.0 216.9

Table 12. Latency in milliseconds per GPU, as plotted in Figure 6 in the main paper.

6. Qualitative Results
In Figures 1 to 3, we display anomaly maps for each of the 32 scenarios of MVTec AD, VisA, and MVTec LOCO. For

MVTec LOCO, we show both logical and structural anomalies. We visualize the anomaly maps using a different scale for
each method, since the anomaly score scales differ between methods. Across scenarios, however, we use the same color
scale per anomaly detection method. A consistent anomaly score scale across applications is an important requirement for a
method. Otherwise, the scale of scores on anomalies is hard to forecast if no or only few defect images are present during
the development of the anomaly detection system. Knowing the scale is important for choosing a robust threshold value
that ultimately determines whether an image or a pixel is anomalous or not. Furthermore, a consistent scale facilitates the
interpretation of anomaly maps. For the evaluated methods, we choose the start and end values of the color scales so that true
positive and true negative detections become clearly visible. For example, the color scale of AST ranges from 2 to 10. Scores
outside of this range are visualized with the minimum and maximum color value, respectively. For PatchCore, choosing the
range of the color scale is difficult. On the one hand, scores of true positive detections are low, such as the contamination
of the banana juice bottle in Figure 1. On the other hand, scores of false positive detections are similarly high, such as the
predictions on the breakfast box in Figure 1.

Overall, the evaluated anomaly detection methods succeed on the anomalies of MVTec AD, but leave room for improve-
ment on MVTec LOCO and VisA.

• EfficientAD responds to both logical and structural anomalies in the images. The strength of its response sometimes
leaves room for improvement, for example, on the logical anomalies of the breakfast box and the box of pushpins in
Figure 1.

• AST detects some logical anomalies, but lacks an approach that detects logical anomalies by design. For example,
it detects that the additional blue cable connecting two splicing connectors in Figure 1 causes unseen features. Yet,
the missing pushpin in the box of pushpins in Figure 1 is also an unseen feature and does not cause a response in
the anomaly map of AST. This highlights the importance of a reliable approach to logical anomalies. Furthermore,



it shows the dependence of anomaly detection methods on the choice of the feature extractor. As shown in Table 4,
EfficientAD is robust to this choice.

• DSR produces very precise segmentations, but also suffers from false positives, for example on the grid and the wood
image of MVTec AD in Figure 2. At times, it furthermore shows no response at all to defects.

• FastFlow’s anomaly maps contain a large amount of noise, i.e. false positive detections. This hinders the interpretability
of its detection results.

• GCAD succeeds at detecting logical anomalies, but has difficulty with some structural anomalies that other methods
detect reliably, such as the scratches on the metal nut in Figure 2 or the green capsules in Figure 3.

• PatchCoreEns struggles with very small defects such as those of the printed circuit boards in Figure 3. Small defects are
challenging, but highly relevant for practical applications. A small contamination can cause a high economic damage
if it goes unnoticed, for example, in a pharmaceutical application.

• SimpleNet performs similar to other methods on MVTec AD, but struggles with the more challenging anomalies of
MVTec LOCO and VisA, for example the defective capsules and PCBs in Figure 3.

• S–T is a patch-based anomaly detection approach and therefore can only detect anomalies if they involve patches that
are anomalous per se, i.e., without putting them in the global context of the respective image. While AST’s feature
vectors have a receptive field that spans across the entire image, S–T’s receptive field is limited to 65×65 pixels.
Therefore, it does not detect anomalies such as the missing transistor in Figure 2.

The qualitative results show tendencies of each method regarding the behavior on anomalous images. While these results
are informative, they should not be used exclusively for evaluating the anomaly detection performance of a method or for
comparing methods. For that, metrics such as the AU-ROC and the AU-PRO are well-suited, since they are evaluated
objectively on thousands of test images across dataset collections.



Input Ground Truth EfficientAD-S EfficientAD-M AST DSR FastFlow GCAD PatchCoreEns SimpleNet S-T

Figure 1. Anomaly maps on anomalous images from MVTec LOCO and MVTec AD. For MVTec LOCO, we show a logical anomaly
(upper row) and a structural anomaly (lower row) for each scenario. The receptive field of AST’s features is large enough to detect some
logical anomalies, while PatchCoreEns and S–T struggle with logical anomalies.



Input Ground Truth EfficientAD-S EfficientAD-M AST DSR FastFlow GCAD PatchCoreEns SimpleNet S-T

Figure 2. Anomaly maps on anomalous images from MVTec AD. Almost all anomalies are detected by every method, but the separability
of pixel anomaly scores varies between methods. For example, PatchCoreEns detects the anomaly on the capsule in the first row but the
pixel anomaly scores are in a similar range as the false positive detections in the background of the screw image.



Input Ground Truth EfficientAD-S EfficientAD-M AST DSR FastFlow GCAD PatchCoreEns SimpleNet S-T

Figure 3. Anomaly maps on anomalous images from MVTec AD and VisA. VisA contains challenging, small anomalies, such as the defect
on the non-aligned macaronis or the defect on the fryum two rows above.
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