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In this supplementary material, we present a compre-
hensive dataset description, elaborate model architecture,
algorithm details, and tables showcasing the accuracies of
both known and unknown classes obtained from our exper-
iments.

1. Dataset Description

(1) Office-31 [10]: This dataset comprises 31 classes ob-
tained from three distinct domains: Amazon, DSLR, and
Webcam, totaling 4652 images. In our experiments, we
consider the 10 classes shared by Office-31 and Caltech-
256 [3] (backpack, bike, calculator, headphones, keyboard,
laptop, monitor, mouse, mug, and projector) as the source
domain label space, following the suggestion of [9]. The re-
maining eleven classes in alphabetical order (ruler, punch-
ers, stapler, scissors, trash can, tape dispenser, pen, phone,
printer, ring binder, and speaker) constitute the target un-
known class space. Due to the relatively fewer number of
samples in the DSLR and Webcam domains, we conduct
experiments solely on the Amazon domain as the source
domain.

(2) Digits: This dataset consists of five digit datasets:
MNIST [6], SVHN [8], USPS [4], MNIST-M, and SYN
[2]. In our setup, MNIST serves as the source domain with
known classes representing numbers from 0 to 4, while the
other datasets are considered as target domains, represent-
ing unknown classes for numbers 5 to 9. We select 10,000
images from the MNIST dataset, following the approach
of [13] and [15], for the source domain.

(3) Office-Home [12]: This dataset comprises data from
four different domains: Art, Clipart, Product, and Real-
World, totaling 15,500 images. Each domain consists of
65 classes, with the first 15 classes (alarm clock, backpack,
battery, bed, bike, bottle, bucket, calculator, calendar, can-
dles, chair, clipboards, computer, couch, and curtains) used

*equal contribution

as the source label space, while the remaining 50 classes are
considered as unknown target classes.

(4) PACS [7]: This dataset contains 9,991 images from
four domains: Art Painting, Cartoon, Photo, and Sketch.
Each domain includes images from seven different classes.
In our setup, we utilize four classes (dog, elephant, giraffe,
and guitar) as the label space in the source domain, while
the remaining three classes (horse, house, and person) are
treated as unknown classes in the target domains.

2. Model Architecture

The detailed architectures of each of the networks the
style synthesis block Fss, the feature aggregation block
Ffa, gl, gl+1:L are given in the tables 1, 2, 3, 4, respec-
tively. In our experiments, we have taken the encoder net-
work to be RESNET18 and gl consists of first five con-
volutional blocks while gl+1:L is rest of the network i.e.,
RESNET18 = gl+1:L ◦ gl. We also conduct experiments by
changing the point of extraction of feature map to apply the
style synthesis block. Table 5 represents the architecture of
gl which was shallower as compared to the one in 3 while
table 6 shows the deeper version. In both the cases, rest of
the RESNET18 was used as gl+1:L. Results of these exper-
iments are given in table 7. The ‘−1’ in output shapes is a
placeholder for the batch-size.

Table 1. Architecture Summary of Fss

Layer (type) Output Shape Param #
Input Shape [−1, 256] 0

Linear-1 [−1, 192] 49,344
ReLU-2 [−1, 192] 0
Linear-3 [−1, 128] 24,704
ReLU-4 [−1, 128] 0

Total parameters: 74,048
Trainable parameters: 74,048
Non-trainable parameters: 0



Table 2. Architecture Summary of Ffa

Layer (type) Output Shape Param #
Input Shape [−1, 1024] 0

Linear-1 [−1, 512] 524,800
ReLU-2 [−1, 512] 0

BatchNorm1d-3 [−1, 512] 1,024
Linear-4 [−1, 512] 262,656

Sigmoid-5 [−1, 512] 0
Total parameters: 788,480

Trainable parameters: 788,480
Non-trainable parameters: 0

Table 3. Architecture Summary of gl

Layer (type) Output Shape Param #
Input Shape [−, 3, 128, 128] 0
Conv2d-1 [−1, 64, 64, 64] 9,408

BatchNorm2d-2 [−1, 64, 64, 64] 128
ReLU-3 [−1, 64, 64, 64] 0

MaxPool2d-4 [−1, 64, 32, 32] 0
Conv2d-5 [−1, 64, 32, 32] 36,864

BatchNorm2d-6 [−1, 64, 32, 32] 128
ReLU-7 [−1, 64, 32, 32] 0

Conv2d-8 [−1, 64, 32, 32] 36,864
BatchNorm2d-9 [−1, 64, 32, 32] 128

ReLU-10 [−1, 64, 32, 32] 0
BasicBlock-11 [−1, 64, 32, 32] 0

Conv2d-12 [−1, 64, 32, 32] 36,864
BatchNorm2d-13 [−1, 64, 32, 32] 128

ReLU-14 [−1, 64, 32, 32] 0
Conv2d-15 [−1, 64, 32, 32] 36,864

BatchNorm2d-16 [−1, 64, 32, 32] 128
ReLU-17 [−1, 64, 32, 32] 0

BasicBlock-18 [−1, 64, 32, 32] 0
Total parameters: 157,504

Trainable parameters: 157,504
Non-trainable parameters: 0

3. Experiments on the large scale dataset Do-
mainNet

The table 14 contains the results on DomainNet dataset.
We had chosen four domains out of six from the dataset
(Clipart, Painting, Sketch and Real). For our experiments,
we selected alphabetically first 150 classes from each of
the four domains and remaining 195 classes were treated
as unknown target class. The total number of samples cor-
responding to these four domain is 362470. We compare
our results against two bechmark methods, ERM [5] and
ADA [13]. Here, we outperform the ADA by 11.17% for
average accuracy (acc) and by 3.15% while compared to
the h-score (hs).

4. Experimental Results with Known and Un-
known Class Accuracies

In this section we report the known and unknown class
accuracies (acck and accu) for the experiments conducted.
The table 8 has the results for Office31 and Digits datasets
while table 9 and 10 have the results for Office-Home and
PACS datasets, respectively.

Table 4. Architecture Summary of gl+1:L

Layer (type) Output Shape Param #
Input Shape [−1, 64, 32, 32] 0
Conv2d-1 [−1, 128, 16, 16] 73,728

BatchNorm2d-2 [−1, 128, 16, 16] 256
ReLU-3 [−1, 128, 16, 16] 0

Conv2d-4 [−1, 128, 16, 16] 147,456
BatchNorm2d-5 [−1, 128, 16, 16] 256

Conv2d-6 [−1, 128, 16, 16] 8,192
BatchNorm2d-7 [−1, 128, 16, 16] 256

ReLU-8 [−1, 128, 16, 16] 0
BasicBlock-9 [−1, 128, 16, 16] 0
Conv2d-10 [−1, 128, 16, 16] 147,456

BatchNorm2d-11 [−1, 128, 16, 16] 256
ReLU-12 [−1, 128, 16, 16] 0

Conv2d-13 [−1, 128, 16, 16] 147,456
BatchNorm2d-14 [−1, 128, 16, 16] 256

ReLU-15 [−1, 128, 16, 16] 0
BasicBlock-16 [−1, 128, 16, 16] 0

Conv2d-17 [−1, 256, 8, 8] 294,912
BatchNorm2d-18 [−1, 256, 8, 8] 512

ReLU-19 [−1, 256, 8, 8] 0
Conv2d-20 [−1, 256, 8, 8] 589,824

BatchNorm2d-21 [−1, 256, 8, 8] 512
Conv2d-22 [−1, 256, 8, 8] 32,768

BatchNorm2d-23 [−1, 256, 8, 8] 512
ReLU-24 [−1, 256, 8, 8] 0

BasicBlock-25 [−1, 256, 8, 8] 0
Conv2d-26 [−1, 256, 8, 8] 589,824

BatchNorm2d-27 [−1, 256, 8, 8] 512
ReLU-28 [−1, 256, 8, 8] 0

Conv2d-29 [−1, 256, 8, 8] 589,824
BatchNorm2d-30 [−1, 256, 8, 8] 512

ReLU-31 [−1, 256, 8, 8] 0
BasicBlock-32 [−1, 256, 8, 8] 0

Conv2d-33 [−1, 512, 4, 4] 1,179,648
BatchNorm2d-34 [−1, 512, 4, 4] 1,024

ReLU-35 [−1, 512, 4, 4] 0
Conv2d-36 [−1, 512, 4, 4] 2,359,296

BatchNorm2d-37 [−1, 512, 4, 4] 1,024
Conv2d-38 [−1, 512, 4, 4] 131,072

BatchNorm2d-39 [−1, 512, 4, 4] 1,024
ReLU-40 [−1, 512, 4, 4] 0

BasicBlock-41 [−1, 512, 4, 4] 0
Conv2d-42 [−1, 512, 4, 4] 2,359,296

BatchNorm2d-43 [−1, 512, 4, 4] 1,024
ReLU-44 [−1, 512, 4, 4] 0

Conv2d-45 [−1, 512, 4, 4] 2,359,296
BatchNorm2d-46 [−1, 512, 4, 4] 1,024

ReLU-47 [−1, 512, 4, 4] 0
BasicBlock-48 [−1, 512, 4, 4] 0

AdaptiveAvgPool2d-49 [−1, 512, 1, 1] 0
Identity-50 [−1, 512, 1, 1] 0

Total parameters: 11,019,008
Trainable parameters: 11,019,0080

Non-trainable parameters: 0

Table 5. Architecture Summary of shallow gl

Layer (type) Output Shape Param #
Input Shape [−, 3, 128, 128] 0
Conv2d-1 [−1, 64, 64, 64] 9,408

BatchNorm2d-2 [−1, 64, 64, 64] 128
ReLU-3 [−1, 64, 64, 64] 0

MaxPool2d-4 [−1, 64, 32, 32] 0
Total parameters: 9,536

Trainable parameters: 9,536
Non-trainable parameters: 0

5. Ablation Studies

Comparison of Fss with MixStyle [16]: We conducted the
experiments by replacing the style synthesis block Fss with



Table 6. Architecture Summary of deep gl

Layer (type) Output Shape Param #
Input Shape [−, 3, 128, 128] 0
Conv2d-1 [−1, 64, 64, 64] 9,408

BatchNorm2d-2 [−1, 64, 64, 64] 128
ReLU-3 [−1, 64, 64, 64] 0

MaxPool2d-4 [−1, 64, 32, 32] 0
Conv2d-5 [−1, 64, 32, 32] 36,864

BatchNorm2d-6 [−1, 64, 32, 32] 128
ReLU-7 [−1, 64, 32, 32] 0

Conv2d-8 [−1, 64, 32, 32] 36,864
BatchNorm2d-9 [−1, 64, 32, 32] 128

ReLU-10 [−1, 64, 32, 32] 0
BasicBlock-11 [−1, 64, 32, 32] 0

Conv2d-12 [−1, 64, 32, 32] 36,864
BatchNorm2d-13 [−1, 64, 32, 32] 128

ReLU-14 [−1, 64, 32, 32] 0
Conv2d-15 [−1, 64, 32, 32] 36,864

BatchNorm2d-16 [−1, 64, 32, 32] 128
ReLU-17 [−1, 64, 32, 32] 0

BasicBlock-18 [−1, 64, 32, 32] 0
Conv2d-19 [−1, 128, 16, 16] 73,728

BatchNorm2d-20 [−1, 128, 16, 16] 256
ReLU-21 [−1, 128, 16, 16] 0

Conv2d-22 [−1, 128, 16, 16] 147,456
BatchNorm2d-23 [−1, 128, 16, 16] 256

Conv2d-24 [−1, 128, 16, 16] 8,192
BatchNorm2d-25 [−1, 128, 16, 16] 256

ReLU-26 [−1, 128, 16, 16] 0
BasicBlock-27 [−1, 128, 16, 16] 0

Conv2d-28 [−1, 128, 16, 16] 147,456
BatchNorm2d-29 [−1, 128, 16, 16] 256

ReLU-30 [−1, 128, 16, 16] 0
Conv2d-31 [−1, 128, 16, 16] 147,456

BatchNorm2d-32 [−1, 128, 16, 16] 256
ReLU-33 [−1, 128, 16, 16] 0

BasicBlock-34 [−1, 128, 16, 16] 0
Total parameters: 683,072

Trainable parameters: 683,072
Non-trainable parameters: 0

Table 7. Results on different depths of gl on Office31 dataset

Metric Shallow gl

Table 5
Our gl Table 3 Deeper gl Table

6

acck 70.64 73.96 75.35
accu 60.59 83.91 66.76
acc 65.53 79.02 70.98
hs 65.23 78.62 70.79

Table 8. acck & accu (% Accuracy) on Office31 and Digits
Dataset.

Method Office31 Digits

acck accu acck accu

OSDAP [11] 75.77 84.28 35.59 70.60
OpenMax [1] 10.01 100 34.40 83.81
ERM [5] 85.1 27.04 56.40 13.04
ERM+CM [17] 82.37 37.6 48.67 53.52
ADA [13] 85.62 25.24 57.24 15.11
ADA+CM [17] 53.02 34.51 49.24 52.07
MEADA [15] 85.78 25.09 57.61 29.83
MEADA+CM [17] 82.77 41.08 52.30 46.11

SODG-NET 73.96 83.91 43.60 70.45
SODG-NET −Ldisc 74.24 82.31 44.63 64.71
SODG-NET −Ldisc − Lsm 73.13 78.55 41.97 67.11
SODG-NET −Lsm 65.65 71.58 37.76 60.12

MixStyle method. The detailed results are shown in table
12 and table 11 for Office31 and PACS dataset respectively.
On Office31 dataset, we beat the results with MixStyle by
4.63% and 4.84% while on the PACS dataset, on an average,
we are outperforming the MixStyle by 4.55% and 4.35% in
terms of acc and hs respectively.
Effects of changes in noise parameters in Fss: To see
the effects of added Gaussian noise to µ1, σ1, µ2, σ2 before
passing them into Fss, we experiment with different values
of µ, σ for the Gaussian distribution (N(µ, σ)). Table 13
shows the results of experiments on Office31 dataset.

6. Closed set domain generalization

In this section we provide the results on closed set single
source domain generalization, that is, when the training and
testing data label space is same. These experiments were
conducted on two datasets, Office31 and PACS. In case of
the Office31 dataset, we have conducted an ablation study
with varying number of classes in the dataset and source do-
main as Amazon (see table 15). For the PACS dataset, each
one of the four domains were taken as source domain for
training and rest were considered as target. The average per-
formance on the PACS dataset for each case is given in table
16. We compare performance of our style synthesis block
against two baselines, one being the ERM [5] and another
one from Wang et al. [14]. We observe that our method per-
forms convincingly when compared with the above men-
tioned ones.
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