
A. Derivation of objectives
A.1. Discriminator objective

θ∗ = argmax
θ

{∑
x∈X

logPD (x)

}

= argmax
θ

{∑
x∈X

log
1

ζ
eDθ(x)

}

= argmax
θ

{∑
x∈X

(Dθ (x)− log ζ)

}

= argmax
θ

∑
x∈X

Dθ (x)− log
∑

y∼PGψ

eDθ(y)

PGψ (y)
+ logS

= argmax

θ

∑
x∈X

Dθ (x)− log
∑

y∼PGψ

eDθ(y)−logPGψ (y)

= argmax

θ

∑
x∈X

Dθ (x)− log
∑

z∼PZ(z)

eDθ(Gψ(z))−logPZ(z)+JGψ (z)

= argmin

θ

∑
x∈X

− log eDθ(x) + log
∑

z∼PZ(z)

eDθ(Gψ(z))−logPZ(z)+JGψ (z)

= argmin

θ

∑
x∈X

log ∑
z∼PZ(z)

eDθ(Gψ(z))−Dθ(x)eJGψ (z)−logPZ(z)

(13)

Where JGψ (z) = log
∣∣∣det(∂Gψ(z)∂z⊺

)∣∣∣ is the log Jacobian determinant of Gψ at z.

A.2. Generator objective

ψ∗ = argmin
ψ

KL
[
PGψ (y) ∥ PDθ (y)

]
= argmin

ψ

{
Ey∼PG(y) log

(
PGψ (y)

PDθ (y)

)}
= argmin

ψ

{
Ey∼PG(y)

[
log
(
PGψ (y)

)]
− Ey∼PG(y) [log (PDθ (y))]

}
[Definition of entropy] = argmin

ψ

−H (y)− 1

m

∑
y∼PG(y)

log (PDθ (y))

[y = Gψ (z)] = argmin

ψ

−H (Gψ (z))− 1

m

∑
z∼PZ(z)

log

(
eDθ(Gψ(z))

ζ

)
= argmin

ψ

−H (Gψ (z))− 1

m

∑
z∼PZ(z)

Dθ (Gψ (z))

= argmax

ψ

{
H (Gψ (z)) +

1

m

∑
z∼PZ

Dθ (Gψ (z))

}

(14)

B. Optimization using Jacobian approximation

Using a single random sample to approximate the Jacobian determinant as in Eq. (8) does not provide an accurate es-
timate. Yet, this approximation is effective at maximization of its determinant. We confirm this claim by optimizing the
approximation of the Jacobian and measure the effect on the true Jacobian.

In this experiment, we randomized 50 neural networks (using a random order of linear, convolution, LeakyRelu or batch-
norm layers). Each network was trained to maximize the approximation of the log determinant of the Jacobian. After each
optimization step, we computed the difference in the value of the log determinant of the true Jacobian from the previous step.
We repeated this experiment with different vector size (8, 16, 32) and different network sizes (1, 4, 16, 32 layers, comparable
with DCGAN) with a learning rate of 5e-4. In Fig. 9 we mark the differences between consecutive steps of the true log
Jacobian. We define the success rate to be the percentage of times the log determinant increases, and present this metric in
each graph. As can be seen, in all cases the success rate is above 85%.

0 10 20 30 40 50
epochs

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

In
cr

ea
se

 o
f t

he
 tr

ue
 lo

g|
M

|

d = 8, # layers = 1

Total increase rate: 90.5%

0 10 20 30 40 50
epochs

1

0

1

2

3

4

In
cr

ea
se

 o
f t

he
 tr

ue
 lo

g|
M

|

d = 8, # layers = 4

Total increase rate: 90.8%

0 10 20 30 40 50
epochs

25

20

15

10

5

0

5

10

In
cr

ea
se

 o
f t

he
 tr

ue
 lo

g|
M

|

d = 8, # layers = 16

Total increase rate: 80.4%

0 10 20 30 40 50
epochs

60

40

20

0

20

40

60

In
cr

ea
se

 o
f t

he
 tr

ue
 lo

g|
M

|

d = 8, # layers = 32

Total increase rate: 87.8%

0 10 20 30 40 50
epochs

0.2

0.1

0.0

0.1

0.2

In
cr

ea
se

 o
f t

he
 tr

ue
 lo

g|
M

|

d = 16, # layers = 1

Total increase rate: 91.2%

0 10 20 30 40 50
epochs

4

3

2

1

0

1

2

3

In
cr

ea
se

 o
f t

he
 tr

ue
 lo

g|
M

|

d = 16, # layers = 4

Total increase rate: 89.2%

0 10 20 30 40 50
epochs

40

20

0

20

40

In
cr

ea
se

 o
f t

he
 tr

ue
 lo

g|
M

|

d = 16, # layers = 16

Total increase rate: 86.0%

0 10 20 30 40 50
epochs

300

250

200

150

100

50

0

50

100

In
cr

ea
se

 o
f t

he
 tr

ue
 lo

g|
M

|

d = 16, # layers = 32

Total increase rate: 90.7%

0 10 20 30 40 50
epochs

3

2

1

0

1

2

3

In
cr

ea
se

 o
f t

he
 tr

ue
 lo

g|
M

|

d = 32, # layers = 1

Total increase rate: 95.6%

0 10 20 30 40 50
epochs

4

2

0

2

4

6

8

10

In
cr

ea
se

 o
f t

he
 tr

ue
 lo

g|
M

|

d = 32, # layers = 4

Total increase rate: 85.3%

0 10 20 30 40 50
epochs

150

100

50

0

50

In
cr

ea
se

 o
f t

he
 tr

ue
 lo

g|
M

|

d = 32, # layers = 16

Total increase rate: 88.3%

0 10 20 30 40 50
epochs

100

50

0

50

100

150

In
cr

ea
se

 o
f t

he
 tr

ue
 lo

g|
M

|

d = 32, # layers = 32

Total increase rate: 89.7%

Figure 9. The difference between iterations of the true log determinant of a network trained to maximize the 1-sample approximation of
the Jacobian log determinant. Each column represents a different network size and each row corresponds to a different latent size. The
black bold line marks 0, where every mark above it means the true value increased.

C. Implementation

C.1. Numerical stability with large Jacobian determinant

During training, since the determinant of the Jacobian is generally a different order of magnitude than the discriminator’s
response (e.g. in the objectives in Eqs. (3) and (5)), it can cause instability in the gradients. To solve this, we add a scalar w
and re-define the probability as

PD (y) =
e

1
wD(y)

ζ
. (15)

This results in a slightly modified discriminator objective (Eq. (3)):

θ∗ = argmax
θ

{∑
x∈X

logPD (x)

}

= argmax
θ

{∑
x∈X

log
1

ζ
e

1
wDθ(x)

}

= argmax
θ

{∑
x∈X

(
1

w
Dθ (x)− log ζ

)}

= argmax
θ

∑
x∈X

 1

w
Dθ (x)− log

∑
y∼PGψ

e
1
wDθ(x)

PGψ (y)

= argmin

θ

∑
x∈X

− 1

w
Dθ (x) + log

∑
y∼PG(y)

exp

(
1

w
Dθ (y)− logPGψ (y)

) .

(16)

For the generator, we use a scaled KL-divergence (f-divergence with f (t) = wt log t. This results in the modified generator
objective (Eq. (5)):

Df (PG ∥ PD) =
∫
f

(
PG (y)

PD (y)

)
PD (y) dy

=

∫
w
PG (y)

PD (y)
log

(
PG (y)

PD (y)

)
PD (y) dy

= Ey∼PG
[
w log

(
PG (y)

PD (y)

)]
=

1

S

∑
y∼PG

[
w log (PG (y))− w log

(
e

1
wD(y)

ζ

)]
=
∑
y∼PG

[−w log |J (y)| −D (y)] .

(17)

C.2. Implementation Details

We trained the generator and discriminator using the PyTorch ADAM optimizer [20]. We set the learning rate of the
discriminator to 1e-5 and of the generator to 5e-4. We trained our model on the CelebA [27] for 30 epochs and CIFAR-
10 [25] for 180 epochs. We generated images using a latent vector of size 100.

C.3. Architecture

C.3.1 Synthetic data network

For the synthetic data problems in Sec. 4.1, our generator is a 2-layered MLP. We used the pytorch autograd jacobian function
to compute the Jacobian and its determinant.

Table 3. Comparison of time per training iteration in seconds between our model and WGAN with DCGAN architecture. The time is
formatted as ⟨mean⟩ ± ⟨standard deviation⟩

CELEBA CIFAR-10
WGAN-GP 0.031± 0.00072 0.025± 0.00067
OURS - 1 SAMPLE 0.053± 0.00181 0.044± 0.00078
OURS - 2 SAMPLES 0.063± 0.00183 0.045± 0.00231

C.3.2 DC-GAN based generator architecture

The generator architecture we used for CIFAR-10 and CelebA is based on the DC-GAN architecture [30]. Given a latent
vector, we concatenate a random normal vector. We then pass this vector to the DC-GAN layers and return the output. In
order to compute ∥Jv∥ from Eq. (9), we use the jvp (Jacobian-vector multiplication) function from pytorch.

C.4. Run times

To compare the effect of the model on the run time of training, we used a NVIDIA A100-SXM4-40GB GPU for all training
on CelebA (64 pixels per edge) and CIFAR-10 (32 pixels per edge). Tab. 3 shows the run time per iteration in seconds. The
table shows that applying the one-way flow almost doubles the time per iteration, but using a few additional samples does
not increase the run time significantly further.

	. Derivation of objectives
	. Discriminator objective
	. Generator objective

	. Optimization using Jacobian approximation
	. Implementation
	. Numerical stability with large Jacobian determinant
	. Implementation Details
	. Architecture
	Synthetic data network
	DC-GAN based generator architecture

	. Run times

