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6. Physical estimator coefficient calibration

This section provides a more detailed description of the
physical estimator calibration procedure described in sub-
subsection 3.1.3 of the paper.

Equation 8 provides a parametric model that allows us to
transform thermal image intensities to object temperatures
and vice versa. To calibrate those parameters, we designed
a calibration setup with the following components:

* an uncooled microbolometric camera; for our experi-
ments, we used FLIR Tau2.

e an environmental chamber to control the camera’s
ambient temperature (which implicitly controls Tj,;),
with an aperture drilled into one of its edges to allow
for image acquisition from its interior.

* a blackbody target, essentially a flat-surface object
whose temperature can be controlled with very fine
precision, to set the temperature of the scene (i.e.,
Ton;); we used a scientific grade (CI SR-800N)
extended-area black body.

To collect measurements, the camera was mounted in-
side the environmental chamber, facing outside through the
drilled aperture, and the blackbody target was placed in
front of the camera outside the chamber, such that it cov-
ered the camera’s entire field of view, as demonstrated in
Figure 5.

During the calibration, the environmental chamber is set
for heating (thus slowly and continuously increasing T%,).
While the chamber’s interior ambient temperature keeps in-
creasing, the blackbody target is repeatedly set to an arbi-
trary temperature, and an image is acquired for every such
temperature. This random target-temperature profile pro-
vides the best coverage of the three-dimensional T,,-T;-
intensity space compared to other alternatives.

To efficiently estimate the coefficients, we organized the
measured intensities and the coefficients in vectors [ and C
correspondingly, such that:

M-C=1 (16)

where each row of the over determined matrix M is the fea-
ture vector (F') of a single measurement, and I holds the

Figure 5. The physical model-calibration setup. The black body
target (d) is observed by the thermal camera (b) through a drilled
aperture (c) at the edge of the environmental chamber (a). This
setup enables controlling T,5; and T3y, independently.

corresponding measured radiometric intensities. Following
the factorization from equation 10, the nth measured radio-
metric intensity equals the inner product between the nth
measured feature vector and the vector of coefficients C":

I[n] =< M|n,:],C >=< F[n],C > (17)

The matrix product factorization in equation 16 enables
applying a linear regression to solve for the coefficients.
As the measurement noise appeared to be approximately
white and Gaussian, the least-squares estimator (which is
the maximum-likelihood estimator in the additive-white-
Gaussian noise regime) was used to extract the coefficients:

Cc=M'I (18)

where MT = (MTM)~*M7 is the Moore-Penrose pseu-
doinverse of M.

In the calibration process described above, the intensity
vector [ corresponds to measurements of a single pixel. Be-
cause each element in the microbolometer might have a dif-
ferent sensitivity, the coefficient extraction was performed
independently for every pixel in the image.

7. Dataset

As mentioned in subsection 4.1 of the paper, one of our
contributions is the introduction of a novel dataset of un-
paired images belonging to different bands of the thermal



(LWIR) spectrum. In the discussed subsection, we provided
a brief description of the data collection procedure. This
section provides more details about the dataset, including
the data collection, the data format, and the preprocessing
applied to the data. The dataset can be accessed through the
project’s website.

7.1. Data collection

In the paper’s introduction, we presented the motiva-
tion of our research - synthesizing a multispectral dataset
to allow the development of algorithms and systems for
nanosatellites. Thus, our goal was to mimic the interstel-
lar acquisition setup to the best pf our ability. To that end,
a light airplane (appears in Figure 6) was used to perform
flights at a height of approximately two kilometers above
ground. Images acquired in such a setup could be later rea-
sonably extrapolated, e.g., by a proper downsampling, to
mimic the scene as if it was captured by an actual nanosatel-
lite.

Figure 6. The light airplane used for acquiring the thermal images.

A dedicated aerial pod was designed and manufactured
to mount the camera on the airplane’s underbelly, as visual-
ized in Figure 7.

Figure 7. The aerial pod used for mounting the thermal camera on
the light airplane’s underbelly.

The pilot performed several flights, with some IR band-
pass filter applied to the camera lens (monochromatic), or
without this filter (panchromatic). While attempting to fol-
low the same predefined trajectory, ensuring that the ac-
tual airplane’s positional and angular states are the same for
different flights is physically infeasible. lJittering and air
bumps provide additional randomness to the system’s state,
resulting in unpredictable and unreproducible acquisition
conditions. Due to those limitations, the images collected
for the different thermal modalities are inherently unpaired,
hence our entire dataset is unpaired.

7.2. Data format

Each frame in the dataset is saved as an independent
numpy .npz file with the following fields:

* image: a two-dimensional 256 X 336 Numpy array con-
taining the radiometric intensities acquired by the Flir
TAU2 camera (with 14-bit precision).

* time: the date and time of the acquired image in GMT.
* lat: the latitude of the plane at the time of acquisition.

* long: the longitude of the plane at the time of acquisi-
tion.

e alt: the altitude of the plane above sea-level at the time
of acquisition (in meters).

* fpa: the intrinsic temperature of the camera as mea-
sured by the focal-plane array thermal sensor (in Cel-
sius).

7.3. Preprocessing

Due to technical considerations, a significant portion of
the acquired images were purely of sea with no additional
features. Pure-sea images are roughly thermally homoge-
neous, i.e., of a constant intensity level, up-to measurement
noise and spatial aberrations, making them extremely simi-
lar to each other and of lesser value to our training. Naively
using all those images for training a would result in a highly
imbalanced dataset, which will bias our model to produce
high quality outputs for sea images, in the expense of other
samples. An impression of the described attributes of sea
images can be obtained from Figure 8.

Sea Land

Figure 8. A thermal image of pure sea vs. an image of land for
reference.

For those reasons, it was decided to design a classifier for
filtering out all sea images from the dataset. As explained
and visualized, sea images are mostly made out of a DC
component (constant) and measurement noise. This means
that the gradients of two images of sea, even at different wa-
ter temperatures, should have a very similar high-frequency
spectral content. Analyzing the gradients of sea and land
images confirms this hypothesis, as demonstrated in Figure


https://bermanz.github.io/PETIT/
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Figure 9. The gradient maps of exemplary land and sea images.
An additional gradient map of a sea image is provided for refer-
ence.

9. This finding encouraged us to base our classifier upon the
gradients of the images. A more thorough quantitative anal-
ysis of the gradients revealed a significant difference be-
tween the norms of the gradients of sea and ground images.
This difference is also visible in Figure 10 where the norms
of ten randomly-selected sea and land images are compared.
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Figure 10. A histogram of the /2 norm of the gradients of random
sea and land images taken from the dataset.

Following these findings, the following pipeline was de-
signed:

1. Prefiltering of the acquired image [ with a two-
dimensional gaussian low-pass filter to attenuate the
noise and very high frequencies, which typically don’t
belong to the spectral content of natural images. We
denote our filtered image by I.

2. Classify I as a land image if |[VI]||5 (the £5 norm of
the gradient of I) is greater than some threshold 7, and
otherwise as a sea image.

The threshold’s value T was set to the average between the
minimum ¢ norm of the gradients over a random set of
1000 land images and the maximum ¢ norm of the gradient
over a random set of 1000 sea images. Formally:
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The entire preprocessing pipeline, as well as the calibrated
threshold, were designed and applied to both monochro-
matic and panchromatic images independently.

8. Additional qualitative results

Following our guarantee from sub-subsection 4.4.2, we
provide additional qualitative examples of our model’s out-
put. These additional examples provide additional evidence
to the claim made in the paper regarding our model’s supe-
rior quality compared to the baseline models. All additional
examples appear in Figure 11 in the page below.



Pan (input) CycleGAN (baseline) CUT (baseline) PETIT (ours) Mono (ref)

Figure 11. Qualitative comparison. (a) Panchromatic (Pan) input. (b) CycleGAN output. (c) CUT output. (d) PETIT output. (e) Real
unpaired monochromatic image (Mono) for reference.
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