
Appendix

A. COCO experiments with fewer labels
We conducted additional experiments on the COCO

dataset using fewer labeled training samples compared
to earlier work: from 0.4% down to 0.1%. We report
results for a supervised training baseline and our semi-
supervised approach in Tab. 8. In this extremely challeng-
ing, very sparsely labeled data regime, our approach shows
marked improvements over the supervised baseline, e.g.,
+3.4 points for 0.1% labeled images using the DINOv2
backbone. Moreover, we find that in this regime the DI-
NOv2 backbone is more effective than the Swin-L (IN-21k)
backbone, e.g., in the 0.4% labeled data case, correspond-
ing to less than 500 of image annotations: the DINOv2
backbone improves mask-AP by 8 points from 23.0 to 31.0,
reaching similar performance as the previous state-of-the-
art approach Polite Teacher with 25 times less annotations
(30.8 mask AP at 10% labeled data, see Tab. 3d. This is in
line with our observation on the 5% labeled data case for
Cityscapes in Tab. 3c, and 1% labeled data case for COCO
in Tab. 3d. See Fig. 7 for an illustration of segmentations
obtained with this model.

Amount of labeled data used 0.1% 0.2% 0.4%

Supervised models

Mask2Former - Swin-L (IN-21k) 5.3 10.2 15.9
Mask2Former - ViT-L (DINOv2) 10.2 19.4 25.7

Semi-supervised models

Ours - Swin-L (IN-21k) 5.8 16.1 23.0
Ours - ViT-L (DINOv2) 13.6 24.9 31.0

Table 8. Evaluation of supervised and semi-supervised models on
COCO using extra small labeled training sets.

B. Details on models and training efficiency

Training efficiency. Our approach can be seen as a two-
stage knowledge distillation method where the teacher and
student share the same architecture. Compared to PT [9],
we pretrain the teacher network using the available labeled
samples only and use its predictions during the student’s
burn-in stage. Compared to NB [28], we generate pseudo-
ground truths in an online manner instead of doing it of-
fline prior to the student’s training. These changes, although
computationally demanding, are justified by the large per-
formance improvements over the previous baselines. For
example, the student training with ResNet-50 backbone on
COCO consumes 89% more GPU memory and the iter-
ations take approximately twice longer compared to the
teacher pre-training. Peak performance is usually achieved

Backbone Parameters (M) GFLOPS

R50 44 224.8± 24.6
Swin-B 107 464.2± 48.7
Swin-L 216 864.7± 90.2
ViT-B (DINOv2) 108 944.5± 93.4
ViT-L (DINOv2) 326 1285.3± 127.1
ViT-B (Deit) 108 692.8± 98.6

Table 9. FLOP and parameter count for the different models used
in our project.

after a few thousand iterations in sparse regimes. There-
fore, in practice, it only takes a few dozen hours to train the
models end-to-end.

Recent works in KD have explored alternative strategies
where no separate teacher network is required, see e.g. [15],
with applications to image classification. Such alternatives
present interesting directions of future work to improve the
efficiency of semi-supervised methods.
Model characteristics. We present the different charac-
teristics of the models used. We report both the number of
parameters and the FLOP count for each architecture used
in our project in Tab. 9 as measured using count_flops
function in the Detectron2 library.
Comparing training protocols. Section 4.3 provides ab-
lation for the training protocol, which compares the main
changes in the distillation strategy with respect to PT while
keeping the overall model architecture constant. Particu-
larly, we :

1. Isolate the effect of our revisited burn-in stage.

2. Isolate the effect of student data augmentations (the
teacher augmentations are the same between PT and
ours).

In Tab. 4, we can see that using the standard burn-in stage
as in PT reduces the AP by 3.7 points. In Fig. 6, we track
the mask-AP evolution when using different data augmen-
tations, we can see that our data augmentation yields better
performance and more stable convergence that PT which
additionally uses random cutout. Hence, both changes show
improved performance with respect to the SOTA protocol
while using the same underlying meta architecture, back-
bone, training epochs etc. This is evidence that our distilla-
tion protocol and revisited burn-in stage are both important
factors for the improved performance, beyond the backbone
and meta-architecture choices.
Estimation of carbon footprint. On COCO, it took 25
hours to train our ViT-L (DINOv2) model using 1% of
annotations, and about 2 days to train a Swin-L (IN-21k)
model using 10% of annotations. Trainings are approxi-
mately 2.5 times faster on Cityscapes. Given the same for-



Figure 7. Illustration of predictions obtained with model trained on COCO with only 0.4% of labels. The model uses a DINOv2 [22]
backbone and achieves an AP of 31.0, which is superior to what the previous SOTA achieved using 25x more labels (PT achieves 30.8 AP
with 10% of labels).

mula used in [22], a Thermal Design Power (TDP) of V100-
32G equal to 250W, a Power Usage Effectiveness (PUE) of
1.1, a carbon intensity factor of 0.385 kg CO2 per KWh, a
time of 2 days × 24 hours × 16 GPUs = 768 GPU hours to
train our approach with a SWIN-L, it leads to 211 kWh, an
equivalent CO2 footprint of 211 × 0.385 = 81.2 kg.
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