Supplementary
EvDNeRF: Reconstructing Event Data with Dynamic Neural Radiance Fields

Jet-Down intensity image reconstruction
PSNRT SSIMtT LPIPS| MAE|
DNeRF 2743 0.873 0.183 0.012
E2VID+DNeRF  24.50 0.533 0.262 0.028
EvDNeRF+DNeRF  27.13 0.807 0.140 0.013
EvDNeRF (ours)  26.98 0.835 0.138 0.013

Table 1. Quantitative metrics for intensity image reconstruction,
comparing EvDNeRF to baselines for the simulated Jet-Down
dataset.

A. Code, datasets, and pretrained weights

Code, datasets, and pretrained weights can be
found here: https://github . com/anish-—
bhattacharya/EvDNeREF.

B. Image reconstruction

We design EVDNeRF to predict events reconstructions
well, and do not expect it to perform well on absolute in-
tensity images or depth of the scene. Training purely from
events data does not provide complete scene information to
achieve good absolute-value reconstructions. However, for
completeness and discussion, we present examples of im-
age and depth reconstructions by EvDNeRF in Figure 2,
and quantitative metrics for image reconstruction in Table
1 and Figure 3. The objects can be made out by the hu-
man eye, but there are floating artifacts, loss of fine details,
and background depth inaccuracies. The problem of im-
age reconstruction is challenging since we are only training
from events; this is especially noticeable in the loss of fine
details in the image of the jet and in the poor quality of
the stationary cabin of the lego tractor (the only supervi-
sion for training EVDNeRF on the cabin is when the bucket
passes in front of the cabin, triggering events dependent
on the bucket-cabin contrast). A previous work (Klenk, et
al. (2023)) used RGB data jointly with events to constrain
the color predictions, which might help here. Additional
loss terms constraining flow and regularizing density values
throughout the scene might improve these aspects of EvD-
NeRF performance.

C. E2VID+DNeRF+VID2E

As mentioned in the paper, since our goal is to create
an events simulator, it follows that we may explore using
VID2E on top of standard DNeRF methods as a competitive
baseline. However, we found that VID2E actually gener-
ated strong background events from the DNeRF predictions
from E2VID+DNeRF, as shown in Figure 4. It is possi-
ble that regularizing background events or those predicted
in static areas of the scene, similar to Klenk, et al. (2023),
might improve results on this particular baseline, though it
would require some tuning.

D. Implementation details

Implementation details. Our code for EVDNeRF is a mod-
ified version of the DNeRF open-source code (github.
com/albertpumarola/D-NeRF (2021)). As in the
original NeRF implementation, two NeRF MLPs for both
coarse and fine sampling are used for training EvDNeRF on
real data, but results were found to be satisfactory with one
NeRF model on simulated data. For paper results, we train
every model for 200k iterations on a single Tesla V100 GPU
(taking 1-2 days), where each iteration samples 1024 rays,
50% of which are cast through event-triggered pixels and
50% through random pixels. Furthermore, these rays are
uniformly selected from all available viewpoints upon each
training iteration, which we observed results in a more sta-
ble training than selecting all rays from a single viewpoint.
Further training details follow.

We implement a learning rate warm-up for the first 1k it-
erations of training, train only on a cropped portion of event
batches centered on high populations of events for 2k itera-
tions, and progressively introduce scene timesteps over the
first 20k iterations. This scheduling significantly improved
training stability. For varied batching of our supervisory
eventstream, we halve the time window of batch sizes twice,
once at 100k and again at 150k of training.
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Figure 1. Ground truth intensity image snapshots of all simulated datasets: Jet-Down, Jet-Spiral, Jet-Land, Multi, and Lego; time progresses

from left to right.
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Figure 2. Sample image and depth reconstructions of Jet-Down
and Lego datasets, at test viewpoints. Quality of these reconstruc-
tions is low, as we expect since we design EVDNeRF to only pre-
dict events well. But the objects can be made out, and it is pos-
sible that some tuning may improve results. Images were shifted
to match ground truth brightness, and depth maps were contrast
adjusted.
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Figure 3. PSNR curves of intensity image generation of our
method versus baseline methods, on the Jet-Down dataset (note
that these curves are without brightness shifting, whereas tabu-
lated metrics are with brightness adjustment).

E. Real world data

E.1. Notes on time-synchronized real data genera-
tion with many views

Generation of real-world data from multi-view event
cameras with a consistent motion was a challenging task.
While the servo-actuated motion and physical placement of
the dynamic object relative to the camera was carefully cal-
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Figure 4. Event reconstructions of the baseline E2VID+DNeRF
but using VID2E to reconstruct events. Since these results are very
poor with high levels of background events, we do not present a
E2VID+DNeRF+VID2E baseline in the paper.

ibrated, it is easily prone to small errors in position or time-
synchronization. This is another key benefit of using a neu-
ral implicit representation for an events simulator; MLPs
can learn smooth functions from noisy input data (within
some bounds). This is also why we were able to manually
time-synchronize the eventstreams using approximate cal-
culations of motion timestamps (see Figure 3b in paper).
Initial attempts to generate real-world data was done with
three hardware time-synchronized event cameras, rigidly
arranged to be 25° apart from each other, along a circle’s
arc with 30cm radius to the target. However, as noted in
Section 4.3 of the paper, events reconstructions improved
as number of views increased, and the front-facing three-
view data was not sufficient to constrain the spatial geom-
etry constructed by EvDNeRF. In this case, training views
overfitted to achieve low training loss, but intermediate val-
idation viewpoints returned poor reconstructions with mul-
tiple hallucinated objects in the renderings (similar to the
poor positioning of the Jet in the sample events reconstruc-
tions in Figure 9 in the paper). Again, additional density or
flow consistency loss terms might improve performance on
number-of-views-limited, front-facing datasets.

E.2. Filtering events reconstructions

As mentioned in Results, we filter out low-valued events
from real-world reconstructions. Comparisons between
original and filtered events are shown in Figure 5. Note that
the true, object-triggered events are consistently high val-
ued, and therefore are easy to filter from the background.
It’s possible that the low levels of background event noise
in the Real-Fork dataset cause the consistent levels of back-
ground event predictions; however, simple attempts to filter
out event noise in the gathered data (via a median filter)
caused divergence of EVDNeRF training, likely since we
violate brightness consistency of underlying image predic-
tions by manipulating the events in such a way.
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Figure 5. Comparison of original events reconstructions on Real-
Fork by EvDNeRF and filtered versions.

F. Additional event reconstruction results

We present additional event reconstructions across test
time windows and viewpoints. See Figures 6 - 11.
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Figure 6. Jet-Down dataset: event reconstructions across time and viewpoint.
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Figure 7. Jet-Spiral dataset: event reconstructions across time and viewpoint.
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Figure 8. Jet-Land dataset: event reconstructions across time and viewpoint.
time —s
T J e A\ >
\ o, \ _\\ ..\:) _{\_'_\ e
e o e -\_: e 4 0
il ~— ey 7o
) P ot [ - £ e -
/ : J_.f -g’ : s \f‘\ Ch \\.—

Figure 9. Lego dataset: event reconstructions across time and viewpoint.
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Figure 10. Multi dataset: event reconstructions across time and viewpoint.
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Figure 11. Real-Fork dataset: event reconstructions across time and viewpoint. Note that view and time axes are swapped for this figure.
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