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A. Implementation Details

Dataset Details. Our model is trained on a combination of

real images from FFHQ and generated samples from EG3D.

We extract the camera pose and pre-process the FFHQ and

synthetic data in the same way as in [3]. Since the pre-

processing technique could not identify the camera poses

of 4 images, we skipped the quantitative evaluation of 4 im-

ages for all the methods presented in the paper. We also aug-

ment the training dataset by mirroring it. As shown in the

main text, adding EG3D samples makes the model robust

to the input image shifts. The synthetic training samples

are generated via sampling latent codes z for EG3D with no

truncation (ψ = 1) often applied for large-scale GANs [2],

thus including the hard samples. In order to match the cam-

era pose distribution in the FFHQ, we generate EG3D sam-

ples with randomly sampled camera poses from FFHQ and

their flipped versions. In Table 1, we demonstrate the de-

pendence of the reconstruction quality on CelebA-HQ on

the number of synthetic samples created by EG3D in ad-

vance added to the dataset.

Experiment settings. For training our models, we adopt

the same training configuration from [15] except for some

minor modifications. In particular, we train the second

branch only after 20K steps and then train both branches

until 500K. Afterward, we freeze the first branch and fine-

tune the second branch until 1.5M steps. In each training

step, we re-render the batch of input images from the same

view and the mirror view. Then, we compute input view

reconstruction losses using same-view rendered images and

mirror-view losses Lm using mirror-view rendered images.

We operate in the resolution of 256×256 except for the cal-

culation of Lid. The region around the face is cropped and

resized to 112×112 before feeding into the face recognition

network [4] to calculate Lid. The models are trained with a

batch size of 3. We use the Ranger optimizer that combines

Rectified Adam [14] with the Lookahead technique [22] and

set a learning rate to 0.0001. The models are trained using

a single NVIDIA GeForce RTX A6000 GPU.

Loss functions. As outlined in the main text, we train our

models using same-view reconstruction and mirror-view

losses. The loss function for our first branch latent encoder

ϕ(.) is defined as:

Lφ(x, xm, ŷ, ŷm) = Lrec(x, ŷ) + λmLm(xm, ŷm) (1)

where xm = flip(x), Lrec(x, ŷ) is defined as

Lrec(x, ŷ) = λ1L2(x, ŷ) + λ2LLPIPS(x, ŷ)+

λ3Lid(x, ŷ)
(2)

and Lm(xm, ŷm) is a probably symmetric prior defined as

Lm(xm, ŷm) = λ4Lsymm(xm, ŷm, σ(xm))+

λ5LLPIPS(xm, ŷm) + λ6Lid(xm, ŷm)
(3)

The main text shows that Lm significantly improves the em-

bedding in 3D space. However, directly applying L2 be-

tween the mirror-view image and the surrogate mirrored

image is not applicable since human faces are not per-

fectly symmetric. Therefore, following the practice out-

lined in [19], we construct L′

symm(xm, ŷm, σ(xm)) as a

penalty between mirrored image xm and reconstruction for

the mirror image ŷm weighted by a pixel-wise uncertainty

map σ(xm) computed for each pixel and taking an average.

Mathematically,

L′

symm(xm, ŷm, σ(xm))

= − 1

|Ω|
∑

uv∈Ω

log
1√

2(σ(xm))uv
exp−

√
2ℓ1,uv

(σ(xm))uv

= log(
√
2) +

1

|Ω|
∑

uv∈Ω

log(σ(xm))uv +

√
2ℓ1,uv

(σ(xm))uv

(4)

where ℓ1,uv is the L1 distance between the intensity of pix-

els at location uv, and σ(xm) is estimated by the neural net-

work for image xm. We can interpret the loss function as

the negative log-likelihood of a factorized Laplacian distri-

bution on the reconstruction residuals. We take pre-trained

network from [19] for predicting uncertainty map σ(xm)



Table 1. Quantitative ablation study over the number of synthesized EG3D samples in the training set.

Our Method MSE ↓ LPIPS ↓ MS-SSIM ↑ Depth ↓
ID ↑

Same Novel View (Yaw angle in radians)

View -0.8 -0.6 -0.3 0.3 0.6 0.8

. . . w/ 0 EG3D samples 0.022 0.09 0.86 0.044 0.70 0.41 0.48 0.60 0.60 0.50 0.42

. . . w/ 10K EG3D samples 0.020 0.09 0.86 0.048 0.68 0.39 0.46 0.58 0.58 0.48 0.40

. . . w/ 50K EG3D samples 0.021 0.09 0.86 0.047 0.68 0.39 0.47 0.58 0.59 0.48 0.40

. . . w/ 100K EG3D samples 0.019 0.08 0.87 0.051 0.68 0.39 0.47 0.58 0.59 0.48 0.40

. . . w/ 150K EG3D samples 0.021 0.09 0.86 0.053 0.66 0.37 0.44 0.56 0.57 0.47 0.40
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Figure 2. Overview of our baseline approaches. G(·) and R(·) stand for EG3D generator and renderer blocks respectively. Hybrid

approaches described in the main text constitute the combination of the techniques shown above, applied sequentially, one after another.

For instance, PTI [16] sequentially performs (a) and then (c)., and W+ pred. + tri-plane opt. sequentially performs (d) and then (b).

Input Uncertainty Input Uncertainty
Map Map

Figure 1. Uncertainty map σ predicted by the pre-trained network

from [19] for the given input. The network assigns higher un-

certainty to regions such as ears, hair, and background where the

symmetry assumption fails.

and replace L1 distance with L2 in (4). Therefore, we re-

formulate L′

symm(xm, ŷm, σ(xm)) as

Lsymm(xm, ŷm, σ(xm)) =
1

|Ω|
∑

uv∈Ω

ℓ2,uv

(σ(xm))uv
(5)

However, we can also train the prediction network from

scratch, optimizing the likelihood in (4). σ(xm) assigns

lower confidence to the region in the mirrored image xm
where the symmetry assumption fails (see Fig. 1). The un-

certainty map predictor network is an encoder-decoder ar-

chitecture that operates in the 64 × 64 resolution. There-

fore, we resize the image to 64 × 64 before feeding into

this network and upsample the output back to 256 × 256

for calculating Lsymm.

We use AlexNet [12] to extract features for the LLPIPS



True geometry from SfM Ours

SfM pSp Ours w/o symm Ours

Figure 3. Overlay of the ground truth SfM mesh and predicted

meshes. As observed in the bottom row (view from behind), Ours

provides the tightest fit to the ground truth SfM mesh. PTI and

SPI produce unnaturally wide meshes that mostly lie inside the

true geometry, except for the nose region (the discrepancy can be

better observed in Fig. 4).

loss. Similarly, Lid is computed by measuring the cosine

similarity between the input image and the output with a

pre-trained ArcFace [4] network. We set the weight of each

component in the loss function as follows: λm = 0.1,

λ1 = λ4 = 1.0, λ2 = λ5 = 1.0 and λ3 = λ6 = 0.1. Anal-

ogously, we construct the loss for the second branch Lψ by

replacing L2 with L1 smooth loss in (2), inside Lsymm in (3)

and first branch outputs ŷ and ŷm with the second branch

outputs y and ym. We use the same weight for each compo-

nent.

First branch architecture. To implement the latent

encoder, we adopt the design of the pSp encoder from [15].

As the EG3D generator expects 14 style vectors for the se-

lected resolution, we modify the pSp architecture to output

14 style vectors instead of 18. We employ IR-SE-50 [4]

pre-trained for face recognition for the backbone network.

Second branch architecture. The tri-plane offsets predic-

tor consists of an encoder and a decoder network, a typi-

cal U-Net [17] architecture. The encoder backbone is an

IR-SE-50 [4] pre-trained on face recognition, accelerating

convergence. We adopt the design of the RUNet [8] for the

decoder with some minor modifications. Instead of using

ReLU as in RUNet, we use PReLU [7] with a separate α for

each input channel and an initial value of 0.25. Like RUNet,

every step in the decoder path consists of upsampling, con-

catenation, and convolution operations. Upsamping of the
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Figure 4. Absolute distance (fraction of inter-ocular dist.) from

the predicted meshes points to their nearest neighbors in the SfM

mesh (top row: Subject #1; bottom row: Subject #2). Lower values

(dark blue) indicate that the predicted mesh is closer to the true

geometry, while higher values (yellow) indicate that the predicted

mesh is too far (inside or outside) from the true geometry.

feature map is performed with a PyTorch nearest neighbor

upsample layer (torch.nn.Upsample). Then, it is followed

by a concatenation with the intermediate feature maps from

the encoder path. The intermediate features are extracted

from the encoder’s 3rd, 7th, 21st, and 22nd layers. Finally,

batch normalization, 3×3 convolution, PReLU, 3×3 convo-

lution, and PReLU are applied sequentially. The final step

in the decoder path takes the concatenation of first branch

tri-plane features with upsampled features from the previ-

ous step as an input and outputs 256 × 256 × 96 tri-plane

offsets. The final step applies 3 × 3 convolution, PReLU,

3×3 convolution, PReLU, and 1×1 convolution operations

sequentially.

B. Novel view rendering of videos

We demonstrate an application of our method to render

in-the-wild videos from a novel view. In Fig. 7, frames of a

video with a person talking and their rendering from a fixed

novel view in the EG3D space are presented. The back-

ground in the video was removed by a matting network [10].

The encoder is capable of representing tiny details of in-the-

wild portrait imagery in 3D and supports complex facial ex-

pressions.

C. Facial Manipulation

To perform image editing, we first obtain the latent code

w ∈ W of the input image via optimization. Since W
space offers more editing power than W+ [18], we se-

lect W space for our experiments. We then obtain the fi-

nal inversion using our second branch by replacing first



branch components with components obtained using opti-

mization. Given the latent code w ∈ W , tri-plane features

(G(w) + ∆T ) and edited latent code wedit, we can ren-

der edited image with camera matrix π by R(T edit, π). In-

spired by [20], we perform following operation to obtain

T edit:

T edit = (G(w) + ∆T ) +G(wedit)−G(w) (6)

We take two editing directions, smile, and age, from the

official implementation of [11], obtained using GANspace

[6] and show editing results in Figs. 8 and 9. Note that

our first branch latent encoder could be modified slightly to

embed the input image in W instead of space W+ as done

in [5] and [1]. We demonstrate, however, that modification

of the tri-plane features that would correspond to a certain

semantic direction is possible and leave the research on the

most plausible face manipulation for both input images and

videos as a suggestion for future work.

D. Discussion of the baselines design

In Fig. 2, we provide a visual overview of the baseline

designs used for the analysis of PTI [16] and tri-plane off-

sets behavior. One-stage inversion techniques can be di-

vided into two approaches: optimization-based and based

on an encoder prediction. Two-stage inversion techniques

involve inference followed by fine-tuning of some of the

generator parameters. Similarly, these parameters can be

fine-tuned via optimization or by encoder prediction. Since

our method involves the prediction of the tri-plane offsets

and avoids fine-tuning the generator parameters, we also

consider the baseline where the tri-plane offsets in the sec-

ond stage are optimized. In the main paper text, we demon-

strate the design of different hybrid two-stage inversion ap-

proaches that combine both optimization and prediction.

For W+ opt., we optimize the latent code w ∈ W+
for 1K steps following [9]. The W+ pred. constitutes the

baseline with the latent code w ∈ W+ predicted by pSp

encoder [15]. For EG3D params opt., we apply the sec-

ond stage of PTI from [16] and optimize for 1K steps. To

optimize for the tri-plane offsets (tri-plane opt.), we use L-

BFGS [13] as the optimizer and employ combination of L2

or LPIPS [23] with regularization term (L2 and LPIPS dis-

crepancy with the first branch prediction) as a loss objective.

We run the optimization for 50 steps. As L-BFGS approxi-

mates the Hessian by calculating several estimates in a sin-

gle step, 50 steps take equivalently 1K gradient evaluations.

E. Geometric evaluation

In order to evaluate how well the method embeds a head

into 3D without any information about the head’s geome-

try, we compare the prediction to the true head geometry

constructed by a Structure-from-Motion method (see para-

graph ”Geometry evaluation for a multi-view sequence”

in Sec. 4.2) for two subjects. The reconstruction is based on

a 360◦ DSLR capture, while the methods make predictions

for the image of the sequence with the head pose closest

to the straight frontal. The sequence for subject #1 is the

same as demonstrated in Fig. 7 in the main text. We rigidly

align the meshes by 5 eyes, nose, and mouth landmarks to

the SfM mesh and analyze the proximity of each predicted

mesh to the SfM mesh in the face region (the bounding re-

gion is defined as an ellipsoid in 3D with the same loca-

tion and size for all methods). We deliberately only select

5 landmarks for alignment to analyze the shape correctness

of the parts not fully visible in the frontal image, such as

cheeks. In Fig. 3, we demonstrate the overlay of the mesh

predicted by TriPlaneNet and true SfM mesh, as well as

a comparison to the meshes obtained from other methods.

As shown in the view behind, parts with only partial pres-

ence in the frontal view get predicted more correctly by our

method; Fig. 4, and Table 2 demonstrate that analytically

via pixel-wise proximity to the SfM mesh.

AD ↓
Ours w/o

PTI SPI pSp symm. prior Ours

Subject #1 0.971 0.360 0.115 0.167 0.090

Subject #2 0.032 0.024 0.016 0.019 0.009

Table 2. Comparison of the average absolute distance (AD) from

the mesh for various methods’ predictions to the true geometry

from SfM.

Figure 5. Overlay of the shape predicted by our method (red)

and: PTI (left image, gray) and SPI (right image, gray). Here,

we demonstrate that these shapes, especially for PTI, are typically

wider in the side projection than for our method, which introduces

a discrepancy with the true geometry (see Fig. 4). The same effect

is demonstrated in Fig. 6 in the main text.



Figure 6. Side-by-side comparison of Ours (golden, right half)

and Ours w/o symm. prior (gray, left half). We observe that the

methods produce similar geometry in the facial region, while the

background “cutting plane” of the mesh is closer to the face w/o

symm. prior. This way, the symm. prior allows to extend the

modeled region. Zoom-in recommended.

F. Additional Qualitative Results

In this section, we present additional qualitative results

on same-view inversion, novel view rendering and ablation

for the loss, and architecture change.

• Figs. 10, 11, 12 and 13 provide qualitative comparison

of our approach with existing state-of-the-art inversion

techniques on image reconstruction.

• Figs. 16, 14, 15, 17, and 18 demonstrate qualitative

comparison of our approach with existing state-of-the-

art inversion techniques on novel-view rendering.

• Figs. 19 and 20 reflect extensive qualitative ablation

studies for the loss and architecture changes.



In
p

u
t

N
o
v
el

v
ie

w
In

p
u

t
N

o
v
el

v
ie

w
In

p
u

t
N

o
v
el

v
ie

w
In

p
u

t
N

o
v
el

v
ie

w
N

o
v
el

v
ie

w

Figure 7. Novel view synthesis of frames extracted from a talking head video. The novel view yaw angles relative to the frontal view are as

follows: second row (-0.3 radians), fourth row (0.0 radians), sixth row (-0.3 radians), eighth row (0.6 radians), and last row (0.8 radians).

Electronic zoom-in recommended.
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Figure 8. Editing result for smile attribute. By utilizing tri-plane features, our method preserves identity more and also generates both

realistic and view-consistent editing.
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Figure 9. Editing result for age attribute. By utilizing tri-plane features, our method preserves identity more and also generates both

realistic and view-consistent editing.
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Figure 10. Additional qualitative comparison on image reconstruction.
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Figure 11. Additional qualitative comparison on image reconstruction.
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Figure 12. Additional qualitative comparison on image reconstruction.
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Figure 13. Additional qualitative comparison on image reconstruction.
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Figure 14. Additional qualitative evaluation on novel view rendering of yaw angle -0.6, -0.3, 0.3, and 0.6 radians.
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Figure 15. Additional qualitative evaluation on novel view rendering of yaw angle -0.6, -0.3, 0.3, and 0.6 radians.
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Figure 16. Additional qualitative evaluation on novel view rendering of yaw angle -0.6, -0.3, 0.3, and 0.6 radians.
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Figure 17. Additional qualitative evaluation on novel view rendering of yaw angle -0.6, -0.3, 0.3, and 0.6 radians.
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Figure 18. Additional qualitative evaluation on novel view rendering of yaw angle -0.6, -0.3, 0.3, and 0.6 radians.
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Figure 19. Additional qualitative ablation study for the loss and architecture changes.
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Figure 20. Additional qualitative ablation study for the loss and architecture changes.
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