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The supplementary material is organized as follows:
Section S-1 (S- refers to the sections in this suppl. doc-
ument) investigates the denoising characteristic of SNNs;
Section S-2 discusses edge-feature extraction using ANNs
vs SNNs; Section S-3 highlights qualitative evaluations on
the newly released DSEC-Semantic dataset; and Section
S-4 provides details regarding computing approximate in-
ference cost for different methods based on the number
of floating point operations they perform per cycle. Sec-
tion S-5 elaborates on the decoupled sampling rates used in
our architecture. Section S-6 finally provides some addi-
tional visualisations to inspect phenomenon we discuss in
the main paper.

1. Denoising with SNNs

In order to segment objects efficiently, we aim to iso-
late relevant events corresponding to objects of interest in
the scene, filtering out any spurious event inputs generated
due to background clutter and sensor noise. Spiking neu-
rons such as the Leaky-Integrate and Fire are excellent can-
didates as they are capable of maintaining an internalized
state called membrane potential yy,e,,, Which decays over
time at a rate controlled by the leak factor. The leak factor
denotes how much of the membrane potential is retained
for the next time step, i.e., the higher the leak factor, the
slower the rate of decay. If the accumulated membrane
potential of the neuron exceeds the threshold at any point,
(Umem > vin), the neuron emits an output spike and resets
its membrane potential.

Spurious events due to sensor noise are usually gener-
ated at much lower rates than events triggered by moving
vehicles, humans or other relevant objects of interest in a
scene. As such, if the time between input events is large, the
membrane potential decays its value before it can reach the
threshold. However, if these input events occur more fre-
quently, they are able to overcome the decay and increase
the membrane potential towards the threshold. Thus, the
neuron generates output spikes if the input events occur at
a frequency higher than a certain value. We visualise this
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Figure 1. Temporal sensitivity of a LIF neuron. Left graph
shows the neuron response to inputs occurring at a lower rate; right
graph shows the neuron response to inputs occurring at a higher
rate. Once the inputs occur at a rate higher than a certain fre-
quency, the neuron generates spikes and resets to a resting value.

phenomenon in Fig. 1. Leveraging this sparse spiking prop-
erty of LIF neurons, our SNN-based TFE module enjoys the
benefits of implicit denoising of input events with no extra
parametric or learning overheads in contrast to dense ANNs
or RNNs which do not directly lend themselves to filtering
out sensor noise.

2. Sharp feature map extraction with ANNs vs
SNNs

We know that in stable lighting conditions, events are
triggered by moving edges (e.g., object contour and texture
boundaries), making an event-based camera a natural edge
extractor. We try to use this captured edge information and
investigate how sparse processing of events in our SNN-
based TFE is better suited to not only high energy savings,
but also implicitly supports sharp edge extraction. We in-
vestigate feature maps from processing events using dense
methods like ANNs instead of sparse methods like SNNG.
Visualising results in Fig. 3, we find that using SNNs for ex-
tracting cues from the input results in edge-discriminative
feature maps (row 2) caused by high spike generation at
the object-boundary pixels where events are triggered at
higher rates. In contrast, using ANN-like dense process-
ing networks (row 3) do not offer similar benefits as is seen
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Figure 3. Feature maps generated by processing Top row: events
inputs with Middle row: SNN-based TFE and Bottom row: ANN-
based SFE.

in Fig. 3 with the feature maps looking fuzzier.

3. Evaluation on DSEC-Semantic Dataset

We provide qualitative samples of HALSIE on the
DSEC-Semantic dataset [1]. Fig. 2 shows our model can
successfully detect objects in various scenes on the test
set comprising ‘zurich_city_13_a’, ‘zurich_city_14_¢’ and
‘zurich_city_15_a’ sequences. Interestingly, even with a
complex dataset such as DSEC-Semantic with 11 seman-
tic classes: background, building, fence, person, pole,
road, sidewalk, vegetation, car, wall, and traffic sign, our

lightweight and inference-efficient method does not fall
short and is still able to segment large objects with almost
accurate boundaries, and detect smaller objects with fine-
grained details in a variety of driving scenes.

4. Computing Approximate Inference Cost

This section validates the energy-efficiency of our
method in terms of compute intensity per inference cycle.
Spiking Neural Networks (SNNs), often referred to as the
third generation of neural networks, are well known for be-
ing highly energy-efficient compared to traditional Artifi-
cial Neural Networks (ANNSs). For estimating the inference
cost per cycle for different architectures, we try to highlight
how computations in SNNs and ANNs primarily differ from
each other. SNNs offer highly sparse, asynchronous event-
driven ACcumulate (AC) operations over time. Hence,
the synaptic computes are performed only when an in-
put spike arrives. In contrast, ANNs perform expensive
Multiply-and-ACcumulate (MAC) operations for comput-
ing dense Matrix-Vector Multiplication (MVM) functions,
irrespective of the sparsity of inputs. We use the findings
in [2] to specify that a MAC operation requires a total of
Enrac = 4.6pJ of energy while an AC operation requires
only Exqc = 0.9pJ for a 32-bit floating-point computa-
tion in 45nm CMOS technology. This makes an AC opera-
tion 5.1x more energy-efficient than a corresponding MAC
operation. Note that comparisons on a different technol-
ogy node would also generate similar energy requirement
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Figure 4. Segmentation results for multi-modal vs. uni-modal settings. Finer objects missing from the GT-labels (zoomed-in patch in
the red box) are detected by our hybrid multi-modal method trained using events + frames.
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Figure 5. Impact of event window density on predictions. Top:
10K; Middle: 100K; Bottom: 1000K. Moderate event bin den-
sity 100K offers better performance compared to its counterparts.

trends between SNNs and ANNs. Coupled with the num-
ber of floating point operations (FLOPs) performed by the
network for a single inference, we benchmark compute en-
ergy cost of existing approaches following the estimation
method used in [3—7] on a 45nm CMOS process node.

It is worth mentioning that we neglect energy consumed
by the memory or any peripheral circuitry and only consider
the compute cost for MAC/ AC operations. First, we cal-
culate the total number of synaptic operations performed in
each layer. For SNNs, the number of FLOPs at a layer is ob-
tained by multiplying the mean spiking rate at each timestep
for that layer, the number of synaptic connections and the
number of operating timesteps. The small input spiking ac-
tivities obtained in different SNN layers are mainly because
of the fact that event camera outputs are highly sparse in na-
ture and the spiking neurons generate progressively sparser
outputs as the network depth increases. This sparse firing
rate is essential for exploiting efficient event-based compu-

tations in the SNN layers. In contrast, ANNs execute dense
matrix-vector multiplication operations without considering
the sparsity of inputs. In other words, ANNs simply feed-
forward the inputs at once, with a fixed total number of op-
erations. This leads to high energy requirements (compared
to SNN5s) since operations are executed for both zero and
non-zero input values, leading to unnecessary compute [3].

Given a number of neurons M, a number of synaptic
connections C, and a mean firing activity F, the num-
ber of FLOPs at each timestep for a layer [ is calculated
as M; x C; x F;. 1In the case of ANNs, we have a
mean_spiking rate = 1 and number_of _timesteps = 1
for each layer. Hence, the total compute energy cost per
inference cycle can be formalized as follows:

FLOPSANN :ZMZ X Ol
1
FLOPsgnn = NZMl x C; x Fy
l

Erotat = FLOPssnN X Eypac + FLOPssyn X Eac

where NV is the number of timesteps and Erp,:,; denotes
the total compute cost for a single inference. We utilize
the above-described formulation to estimate the total com-
pute energy required by different networks during infer-
ence. Note that we only consider convolution operations
to compute the number of FLOPs, and neglect energy con-
sumed by Batch-norm layers, or activations after each con-
volution layer. The results in Tab. 1, Tab. 2 and Tab. 3
in the main manuscript suggest that our method achieves
competitive performance and the least compute energy re-
quirement compared to the ‘heavier’ current state-of-the-
art approaches [8—12]. Specifically, we reduce parameter
count (~ 33x lower) and inference cost (~ 20x lower)
compared to prior art. This is mainly attributed to our ef-
ficient hybrid SNN-ANN temporal-spatial feature learning
method which enables us to use a lightweight architecture



for edge-compute without compromising on semantic per-
formance. Additionally, the SNN-encoder pathway in our
network contributes negligibly to the total compute energy
cost, reducing our energy requirements even further.

5. Architecture Details

We provide details on the decoupled sampling rates
T, X 1, Of the dilated convolution blocks used in our MMix
module as follows: 1 x 6, (6 x 21, 18 x 15,1 x 1) and 6 x 3.
The rates correspond to dilated conv. blocks appearing from
left to right in Fig. 4 from the main paper. For blocks ap-
pearing in the same vertical alignment, rates are stated in
top to bottom order inside single brackets.

6. Additional visualisations

Following the discussion in the main paper, we pro-
vide visualisations for segmentation results using only one
modality (events or frames) versus multi-modal settings
in Fig. 4 and show the impact of varying event window den-
sity on predictions in Fig. 5.

References

[1] Z. Sun, N. Messikommer, D. Gehrig, and D. Scaramuzza,
“Ess: Learning event-based semantic segmentation from still
images,” arXiv preprint arXiv:2203.10016, 2022. 2

[2] M. Horowitz, “1.1 computing’s energy problem (and what
we can do about it),” in 2014 IEEE International Solid-State
Circuits Conference Digest of Technical Papers (ISSCC),
pp. 1014, 2014. 2

[3] C. Lee, A. K. Kosta, A. Z. Zhu, K. Chaney, K. Daniilidis,
and K. Roy, “Spike-flownet: event-based optical flow es-
timation with energy-efficient hybrid neural networks,” in
European Conference on Computer Vision, pp. 366-382,
Springer, 2020. 3

[4] Y. Kim, J. Chough, and P. Panda, “Beyond classification: di-
rectly training spiking neural networks for semantic segmen-
tation,” Neuromorphic Computing and Engineering, 2022. 3

[5] C. Lee, A. K. Kosta, and K. Roy, “Fusion-flownet: Energy-
efficient optical flow estimation using sensor fusion and deep
fused spiking-analog network architectures,” in 2022 Inter-
national Conference on Robotics and Automation (ICRA),

pp. 6504-6510, IEEE, 2022. 3

[6] P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy,
J. Sawada, FE. Akopyan, B. L. Jackson, N. Imam, C. Guo,
Y. Nakamura, ef al., “A million spiking-neuron integrated
circuit with a scalable communication network and inter-
face,” Science, vol. 345, no. 6197, pp. 668-673, 2014. 3

[7] B.Rueckauer, I.-A. Lungu, Y. Hu, M. Pfeiffer, and S.-C. Liu,
“Conversion of continuous-valued deep networks to efficient
event-driven networks for image classification,” Frontiers in
neuroscience, vol. 11, p. 682, 2017. 3

[8] L. Wang, Y. Chae, and K.-J. Yoon, “Dual transfer learning
for event-based end-task prediction via pluggable event to
image translation,” in Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, pp. 2135-2145,
2021. 3

[9] I. Alonso and A. C. Murillo, “Ev-segnet: Semantic seg-
mentation for event-based cameras,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops, pp. 0-0, 2019. 3

[10] D. Gehrig, M. Gehrig, J. Hidalgo-Carri6, and D. Scara-
muzza, “Video to events: Recycling video datasets for event
cameras,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 35863595,
2020. 3

[11] L. Wang, Y. Chae, S.-H. Yoon, T.-K. Kim, and K.-J. Yoon,
“Evdistill: Asynchronous events to end-task learning via
bidirectional reconstruction-guided cross-modal knowledge
distillation,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 608-619,
2021. 3

[12] H. Rebecq, R. Ranftl, V. Koltun, and D. Scaramuzza, “High
speed and high dynamic range video with an event camera,”
IEEE transactions on pattern analysis and machine intelli-
gence, vol. 43, no. 6, pp. 1964-1980, 2019. 3



	. Denoising with SNNs
	. Sharp feature map extraction with ANNs vs SNNs
	. Evaluation on DSEC-Semantic Dataset
	. Computing Approximate Inference Cost
	. Architecture Details
	. Additional visualisations

