
A. Additional details
We have followed the experimental choices from [39]

for FEMNIST, CIFAR-10-C, TinyImageNet-C and [19] for
iWildCam, unless we specify otherwise. This includes the
splits of data into training, validation and test sets as well as
the splits of domains into meta-training, meta-validation and
meta-test sets of domains. For iWildCam we use the OOD
splits from [19].

A.1. Models

Feature extractor and classifier:

• FEMNIST: CNN with three convolutional layers, hid-
den dimension of 128, batch normalization, ReLU acti-
vation, kernel of 5, padding of 2. Classifier consists of
two fully-connected layers with 200 hidden units and
ReLU activation in between. The input shape of images
is 28× 28.

• CIFAR-C: Same architecture as for FEMNIST, but with
three input channels instead of 1 (colour images). The
input shape of images is 32× 32.

• TinyImageNet-C: ImageNet pre-trained ResNet50 [13].
The classifier consists of one fully connected layer. The
input shape of images is 64× 64.

• iWildCam: ImageNet pre-trained ResNet50 [13]. The
classifier consists of one fully connected layer. The
input shape of images is 112× 112.

Adaptation-specific components:

• CML: Context network is used to transform the support
examples – three convolutional layers, 64 hidden units,
kernel size of 5, padding of 2, with batch normalization
and ReLU activation. The output of the network has the
same shape as input. To create the context we average
the context network outputs across the support exam-
ples and use the same context for all query examples in
the task.

• CXDA: All key details are explained in the main text,
and we provide more detailed explanations here. The
size of the fully-connected layers depends on the flat-
tened shape of the features – only one cross-attention
layer is used. After multiplying attention weights with
projected values (Av), we transform the output further
using projection matrixW , similarly as [4]. However,
we do not use a further MLP model that would contain
multiple layers and non-linearity, so we also follow [4]
in this aspect. The output of the cross-attention mod-
ule has the same shape as input. As part of CXDA,
batch normalization statistics of the feature extractor
are updated too using the support set.

A.2. Training

Dataset-specific training details:

• FEMNIST: SGD with learning rate of 10−4, momen-
tum of 0.9 and weight decay of 10−4, trained for 200
epochs, with validation set evaluated every 10 epochs,
and early stopping based on accuracy.

• CIFAR-C: SGD with learning rate of 10−2, momentum
of 0.9 and weight decay of 10−4, trained for 100 epochs,
with validation set evaluated every 10 epochs, and early
stopping based on accuracy.

• TinyImageNet-C: SGD with learning rate of 10−2, mo-
mentum of 0.9 and weight decay of 10−4, trained for
50 epochs, with validation set evaluated every 5 epochs,
and early stopping based on accuracy.

• iWildCam: Adam with learning rate of 3 × 10−5, no
weight decay, trained for 50 epochs, with validation set
evaluated every 5 epochs, and early stopping based on
macro F1 score.

In all cases we use cross-entropy loss, and the cross-
attention parameters are optimized in the same way as the
main model. In each iteration we use a task that has 5
domains with 20 support examples for each sampled domain,
and there are 20 query examples from one selected domain
from the set of current domains.

Details about fine-tuning (FT) of the pre-trained ERM
model: we perform fine-tuning by taking 10x smaller learn-
ing rate compared to the ones used during training and then
performing 10 steps on the task’s support data. We consider
two losses: 1) entropy minimization (EM) and 2) information
maximization (IM) of the support set example predictions
during the fine-tuning. We reset the model to the pre-trained
state for each test task.

A.3. Latent and continual domain adaptation

SF-OCDA When using SF-OCDA, pre-training is the
same as for ERM, but the adaptation on evaluation tasks
is specialized. As part of SF-OCDA [40] repurposed into
our setup, we perform 10 update steps with 10x smaller
learning rate, similar to our other back-propagation based
baselines. Following [40], we use cross-entropy loss be-
tween the pseudo-labels and the predicted labels, which are
predicted for clean support data or augmented support data
with 70% and 30% probability respectively. The augmen-
tations are more advanced and include color jitter, random
affine transformation, Gaussian blur, random horizontal flip
and Gaussian noise.

CoTTA Similar to other back-propagation based ap-
proaches, only the adaptation to evaluation tasks is unique
and uses 10 update steps with 10x smaller learning rate



than used during pre-training. During adaptation we directly
follow [36] and use the support examples for adaptation.
The key idea of the method is to use weight-averaged and
augmentation-averaged predictions in order to reduce error
accumulation. Additionally a small random part of neurons
is restored to the pre-trained weights in each iteration, which
helps prevent catastrophic forgetting.

SLA SLA [7] modifies the architecture of the main
model to include gates and corrections (adapters) to handle
latent domains. The adapters are trained alongside the main
model in the pre-training stage. Since already two adapters
are shown to perform well in [7], we also use two of them.
Support examples of evaluation tasks are not used for adap-
tation because the model with trained adapters is directly
used to make predictions on the query examples, with the
adaptation done by using the adapters.
B. Qualitative analysis

We provide qualitative analysis of our approach in Figure
5. The analysis shows that similar images from the same lo-
cation are given the largest weights, but also relevant images
from other locations are given larger weights.

C. Runtime analysis

We provide a more detailed runtime analysis in Table
3. Table 3 (left) shows that the time per task (combination
of adaptation and inference) of CXDA is very similar to
feed-forward baselines and significantly faster than the time
of fine-tuning (back-propagation) baselines. Table 3 (right)
shows that the episodic pre-training takes longer for the
smaller datasets, but the difference is small for large datasets
and models. However, the pre-training time is not of par-
ticular interest to us because of the focus on fast adaptation
to new tasks during deployment. Overall back-propagation-
based approaches have significantly larger inference times
than the feed-forward ones, showing the need for special-
ized feed-forward adaptation methods. We additionally note
the total runtime of fine-tuning methods is closer to the
feed-forward approaches because their training is done in a
standard way. All experiments within the same benchmark
used the same GPU and number of CPUs.

D. Additional analyses

The additional analyses use pre-trained models that were
trained with tasks that have 100 support examples coming
from 5 domains. We then deploy them to tasks that have 1)
variable number of support domains or 2) variable support
set sizes. Tables 4 and 5 show that the best performance
is obtained when there are fewer domains and that CXDA
can handle well also cases when there is a large number of
domains. Tables 6 and 7 confirm CXDA is scalable and
outperforms other approaches even if the support set size

changes to more or fewer examples. Since the latent and
continual domain adaptation methods have not shown to be
promising in the main setup, we do not evaluate them as part
of the additional analyses.

E. Patch-to-patch attention
We provide additional comparison of image-to-image

and patch-to-patch (P2P) attention in Table 8. Compared
to standard image-to-image CXDA, CXDA P2P performs
slightly worse, likely because using whole images is simpler
and provides useful regularization. In terms of time, the
detailed comparison depends on the setup, but overall both
need relatively similar time in practice.



Query image

Location #288

W: 0.009 W: 0.007 W: 0.006 W: 0.001 W: 0.001

Largest attention weights

W: 0.000 W: 0.000 W: 0.000 W: 0.000 W: 0.000

Smallest attention weightsLocation #301

W: 0.257 W: 0.126 W: 0.117 W: 0.099 W: 0.058 W: 0.007 W: 0.005 W: 0.002 W: 0.001 W: 0.000

Location #288

W: 0.001 W: 0.000 W: 0.000 W: 0.000 W: 0.000 W: 0.000 W: 0.000 W: 0.000 W: 0.000 W: 0.000

Location #187

W: 0.077 W: 0.022 W: 0.009 W: 0.002 W: 0.002 W: 0.000 W: 0.000 W: 0.000 W: 0.000 W: 0.000

Location #125

W: 0.009 W: 0.003 W: 0.003 W: 0.002 W: 0.002 W: 0.000 W: 0.000 W: 0.000 W: 0.000 W: 0.000

Location #120

Figure 5. Analysis of attention weights for an example task in iWildCam, with a query image coming from location (camera trap) #288. We
show the five support examples in each domain that have the largest and smallest attention weights. Similar images from the same location
(#288) are given the largest weights, but also relevant images from other locations (e.g. #125) are given larger weights. The examples with
the smallest attention weights visually do not seem relevant.



Time for adaptation and inference on a task (ms/task) Total runtime for pre-training and adaptation (minutes)
Approach FEMNIST CIFAR-C TinyImageNet-C iWildCam FEMNIST CIFAR-C TinyImageNet-C iWildCam

ERM 12.0 ± 0.1 15.7 ± 0.3 52.8 ± 0.2 352.0 ± 2.8 38.3 ± 0.3 26.6 ± 0.2 94.1 ± 0.2 440.2 ± 5.4
CML 13.1 ± 0.2 15.8 ± 0.1 48.9 ± 0.1 385.2 ± 8.0 55.2 ± 1.0 35.2 ± 0.2 131.8 ± 0.2 461.9 ± 7.2
BN 16.5 ± 0.7 19.2 ± 0.2 74.1 ± 0.1 345.2 ± 1.9 44.5 ± 0.3 31.6 ± 0.3 112.3 ± 0.3 432.2 ± 0.8
CXDA 17.8 ± 1.5 20.5 ± 0.2 77.9 ± 2.8 392.5 ± 1.3 110.0 ± 12.0 63.2 ± 0.6 167.9 ± 1.9 491.6 ± 1.0

FT-EM 352.7 ± 42.4 387.1 ± 10.5 840.2 ± 15.4 2044.7 ± 238.0 97.5 ± 6.4 156.6 ± 3.6 483.4 ± 4.9 907.1 ± 28.0
FT-IM 296.9 ± 3.1 385.9 ± 10.9 830.7 ± 16.6 1709.8 ± 16.5 78.2 ± 0.4 150.2 ± 3.9 470.8 ± 7.3 688.0 ± 14.8

SF-OCDA 294.0 ± 7.5 488.0 ± 8.8 980.8 ± 8.8 1708.6 ± 1.9 77.7 ± 1.5 229.5 ± 34.3 630.8 ± 23.8 599.8 ± 3.1
CoTTA 1126.2 ± 177.4 1390.9 ± 20.1 5876.5 ± 196.8 8790.9 ± 335.7 209.3 ± 29.1 492.2 ± 7.0 3009.4 ± 93.4 1823.5 ± 85.8
SLA 25.5 ± 0.8 25.1 ± 0.0 217.6 ± 0.5 317.3 ± 5.2 85.5 ± 2.3 49.7 ± 0.1 367.9 ± 3.9 489.4 ± 5.8

Table 3. Comparative computational cost of different adaptation methods for adaptation and pre-training.

Approach 1 domain 2 domains 5 domains 10 domains 20 domains

ERM 58.3 ± 0.4 54.2 ± 0.3 44.3 ± 0.5 37.9 ± 0.5 29.4 ± 0.4
CML 57.7 ± 0.7 54.3 ± 0.6 44.8 ± 0.5 39.2 ± 0.4 30.6 ± 0.4
BN 59.7 ± 0.5 55.4 ± 0.5 45.4 ± 0.7 38.9 ± 0.7 30.2 ± 0.6
CXDA 62.7 ± 0.4 58.7 ± 0.3 49.4 ± 0.6 43.0 ± 0.5 33.2 ± 0.3

FT-EM 49.4 ± 0.6 49.0 ± 0.5 44.9 ± 0.6 39.1 ± 0.5 30.5 ± 0.4
FT-IM 53.1 ± 0.5 50.7 ± 0.5 45.6 ± 0.5 39.6 ± 0.5 30.7 ± 0.4

Table 4. Analysis of the impact of variable number of domains in the support set – worst 10% tasks test accuracy on CIFAR-C (%).

Approach 1 domain 2 domains 5 domains 10 domains 20 domains

ERM 68.7 ± 0.3 68.7 ± 0.3 68.6 ± 0.3 68.5 ± 0.2 68.6 ± 0.2
CML 68.8 ± 0.6 69.2 ± 0.5 69.5 ± 0.5 69.4 ± 0.4 69.5 ± 0.4
BN 69.7 ± 0.4 69.4 ± 0.4 69.3 ± 0.4 69.1 ± 0.4 69.2 ± 0.4
CXDA 72.2 ± 0.2 72.1 ± 0.2 72.0 ± 0.3 71.9 ± 0.3 71.9 ± 0.3

FT-EM 69.0 ± 0.4 69.1 ± 0.3 69.2 ± 0.4 69.2 ± 0.3 69.3 ± 0.3
FT-IM 69.8 ± 0.3 69.6 ± 0.3 69.5 ± 0.3 69.4 ± 0.3 69.5 ± 0.3

Table 5. Analysis of the impact of variable number of domains in the support set – average test task accuracy on CIFAR-C (%).

Approach 10 examples 20 examples 50 examples 100 examples 200 examples 500 examples

ERM 0.1 ± 0.0 21.7 ± 0.1 38.2 ± 0.5 44.3 ± 0.5 48.2 ± 0.6 50.2 ± 0.7
CML 0.0 ± 0.0 21.7 ± 0.2 38.9 ± 0.5 44.8 ± 0.5 48.6 ± 0.5 50.6 ± 0.4
BN 1.2 ± 1.0 22.8 ± 0.9 39.5 ± 0.7 45.4 ± 0.7 49.4 ± 0.7 51.3 ± 0.7
CXDA 1.8 ± 0.9 26.4 ± 0.7 43.0 ± 0.5 49.4 ± 0.6 53.8 ± 0.6 56.2 ± 0.8

FT-EM 0.8 ± 0.7 22.4 ± 0.6 39.0 ± 0.5 44.9 ± 0.6 48.9 ± 0.5 50.8 ± 0.5
FT-IM 1.3 ± 0.9 22.9 ± 0.8 39.7 ± 0.5 45.6 ± 0.5 49.6 ± 0.5 51.7 ± 0.4

Table 6. Analysis of the impact of variable number of examples in the support set – worst 10% tasks test accuracy on CIFAR-C (%).



Approach 10 examples 20 examples 50 examples 100 examples 200 examples 500 examples

ERM 68.7 ± 0.3 68.7 ± 0.3 68.6 ± 0.3 68.6 ± 0.3 68.6 ± 0.3 68.6 ± 0.3
CML 67.7 ± 0.3 68.7 ± 0.4 69.3 ± 0.4 69.5 ± 0.5 69.5 ± 0.5 69.6 ± 0.5
BN 69.3 ± 0.4 69.3 ± 0.4 69.2 ± 0.4 69.3 ± 0.4 69.2 ± 0.4 69.3 ± 0.4
CXDA 69.6 ± 0.3 70.9 ± 0.3 71.7 ± 0.3 72.0 ± 0.3 72.1 ± 0.2 72.2 ± 0.3

FT-EM 69.1 ± 0.3 69.2 ± 0.3 69.1 ± 0.3 69.2 ± 0.4 69.2 ± 0.3 69.2 ± 0.3
FT-IM 69.4 ± 0.3 69.5 ± 0.3 69.4 ± 0.3 69.5 ± 0.3 69.4 ± 0.3 69.5 ± 0.3

Table 7. Analysis of the impact of variable number of examples in the support set – average test task accuracy on CIFAR-C (%).

FEMNIST CIFAR-C TinyImageNet-C iWildCam

Approach W10% Avg W10% Avg W10% Avg W10% Avg

ERM 52.7 ± 1.4 77.2 ± 0.9 44.3 ± 0.5 68.6 ± 0.3 4.8 ± 0.2 26.4 ± 0.4 0.0 ± 0.0 38.7 ± 0.8
CXDA 53.3 ± 0.6 78.3 ± 0.0 49.4 ± 0.6 72.0 ± 0.3 6.5 ± 0.2 28.6 ± 0.3 3.6 ± 1.5 43.5 ± 1.5
CXDA P2P 52.0 ± 0.7 77.3 ± 0.3 45.6 ± 0.3 69.8 ± 0.2 6.8 ± 0.2 28.9 ± 0.1 4.1 ± 0.9 42.9 ± 1.3

Table 8. Comparison of image-to-image and patch-to-patch (P2P) attention: average and worst-case (worst 10% tasks) test performance,
with standard error of the mean across 3 random seeds. Accuracy is reported for all except iWildCam, where F1 score is used (%). Our
image-to-image CXDA performs better than the patch-to-patch alternative in general.


