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We mention the following discussions in the supplemen-
tary:

• Detailed dataset descriptions.

• Analysis of computational complexity.

• Detailed results for in-domain base-to-new class gen-
eralization over the 11 datasets in Table 2.

• Additional results on cross-domain base-to-new class
generalization using ClipArt as the source domain for
the Office-Home dataset in Table 3.

0.1. Dataset details

We evaluate STYLIP over five benchmark datasets for
multi-source and single-source DG, which are described
as follows: (1) Office-Home [23] - It consists of 15,500
images coming from 65 classes covering four domains,
namely, Art, Clipart, Product, and Real. (2) PACS [13] -
Includes 9991 images consisting of seven classes that are
spread across four domains, Artpaint, Cartoon, Sketch, and
Photo. (3) VLCS [14] - It was prepared by combining im-
ages from four image classification datasets, i.e., PASCAL
VOC 2007 [4], Caltech [5], LabelMe [21], and Sun [24].
It consists of images from five classes, Bird, Car, Chair,
Dog, and Person. (4) Digits-DG [28] - This dataset is de-
signed in the combination of handwritten digit recognition
datasets, namely, MNIST [12], MNIST-M [6], SVHN [16],
and SYN [6]. (5) DomainNet [19] - It consists of images
from six distinct domains, including real, painting, clipart,
quickdraw, infograph, and sketch. Each domain has 48K -
172K images (600K in total) categorized into 345 classes.

We further analyse the performance of STYLIP for
cross dataset generalization, where STYLIP is trained on
ImageNet [11] and tested on 10 other different datasets,
including Caltech101 [5], OxfordPets [18], StanfordCars

*equal contribution

[10], Flowers102 [17], Food101 [1], FGVCAircraft [15],
SUN397 [24], DTD [3], EuroSAT [8] and UCF101 [22].
Computation Complexity. We run our model on NVIDIA
RTX 3090 Ti with 24 GB card. Tab. 1 represents the
comparison of computational complexity between differ-
ent prompting techniques (CoOp [27], CoCoOp [26], and
MaPLe [9]) in terms of GFLOPS relative to CoOp. MaPLe
requires 0.12% more computational overhead than CoOp
and CoCoOp, whereas STYLIP needs 0.18% more re-
sources than MaPLe, but STYLIP outperforms state-of-the-
art MaPLe on the cross-dataset generalization (average over
11 datasets) approximately by 1.2%.

Table 1. Increase in compute w.r.t. CoOp and CoCoOp.

CoOp [27] CoCoOp [26] MaPLe [9] STYLIP

1× 1× +0.12% +0.18%
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Table 2. Comparison with state-of-the-art methods on base-to-new generalization. STYLIP shows better generalization performance over
existing methods on 11 different recognition datasets on 16-shots and a context length of four. HM represents the harmonic mean. (In %)

(a) Average over 11 datasets (b) ImageNet (c) Caltech101

Base New HM Base New HM Base New HM

CLIP [20] 69.34 74.22 71.70 CLIP [20] 72.43 68.14 70.22 CLIP [20] 96.84 94.00 95.40
CoOp [27] 82.69 63.22 71.66 CoOp [27] 76.47 67.88 71.92 CoOp [27] 98.00 89.81 93.73
CoCoOp [26] 80.47 71.69 75.83 CoCoOp [26] 75.98 70.43 73.10 CoCoOp [26] 97.76 93.81 95.84
LASP [2] 82.70 74.90 78.61 LASP [2] 76.20 70.95 73.48 LASP [2] 98.10 94.24 96.16
MaPLe [9] 82.28 75.14 78.55 MaPLe [9] 76.66 70.54 73.47 MaPLe [9] 97.74 94.36 96.02

STYLIP-con 82.64 75.39 78.85 STYLIP-con 76.81 70.74 73.65 STYLIP-con 97.74 94.83 96.26
STYLIP-sty 82.93 75.67 79.13 STYLIP-sty 76.93 71.05 73.87 STYLIP-sty 97.89 94.78 96.31
STYLIP∗ 82.30 75.24 78.61 STYLIP∗ 76.34 70.46 73.28 STYLIP∗ 97.45 94.61 96.01
STYLIP 83.22 75.94 79.47 STYLIP 77.15 71.34 74.13 STYLIP 98.23 94.91 96.54

(d) OxfordPets (e) StanfordCars (f) Flowers102

Base New HM Base New HM Base New HM

CLIP [20] 91.17 97.26 94.12 CLIP [20] 63.37 74.89 68.65 CLIP [20] 72.08 77.80 74.83
CoOp [27] 93.67 95.29 94.47 CoOp [27] 78.12 60.40 68.13 CoOp [27] 97.60 59.67 74.06
CoCoOp [26] 95.20 97.69 96.43 CoCoOp [26] 70.49 73.59 72.01 CoCoOp [26] 94.87 71.15 81.71
LASP [2] 95.90 97.93 96.90 LASP [2] 75.17 71.60 73.34 LASP [2] 97.0 74.0 83.95
MaPLe [9] 95.43 97.76 96.58 MaPLe [9] 72.94 74.00 73.47 MaPLe [9] 95.92 72.46 82.56

STYLIP-con 95.66 97.94 96.79 STYLIP-con 73.83 74.15 73.99 STYLIP-con 96.14 72.75 82.83
STYLIP-sty 95.82 98.02 96.91 STYLIP-sty 74.67 74.35 74.51 STYLIP-sty 96.35 72.91 83.01
STYLIP∗ 95.57 97.82 96.68 STYLIP∗ 73.16 73.92 73.54 STYLIP∗ 96.02 72.53 82.64
STYLIP 95.96 98.14 97.04 STYLIP 75.19 74.46 74.82 STYLIP 96.54 73.08 83.19

(g) Food101 (h) FGVCAircraft (i) SUN397

Base New HM Base New HM Base New HM

CLIP [20] 90.10 91.22 90.66 CLIP [20] 27.19 36.29 31.09 CLIP [20] 69.36 75.35 72.23
CoOp [27] 88.33 82.26 85.19 CoOp [27] 40.44 22.30 28.75 CoOp [27] 80.60 65.89 72.51
CoCoOp [26] 90.70 91.29 90.99 CoCoOp [26] 33.41 23.71 27.74 CoCoOp [26] 79.74 76.46 78.27
LASP [2] 91.20 91.70 91.44 LASP [2] 34.53 30.57 32.43 LASP [2] 80.70 78.60 79.63
MaPLe [9] 90.71 92.05 91.38 MaPLe [9] 37.44 35.61 36.50 MaPLe [9] 80.82 78.70 79.75

STYLIP-con 90.92 92.23 91.57 STYLIP-con 37.23 35.70 36.45 STYLIP-con 81.23 78.94 80.07
STYLIP-sty 90.95 92.30 91.62 STYLIP-sty 37.51 35.75 36.61 STYLIP-sty 81.79 79.40 80.58
STYLIP∗ 90.84 92.11 91.47 STYLIP∗ 37.10 35.58 36.32 STYLIP∗ 80.95 78.80 79.86
STYLIP 91.20 92.48 91.84 STYLIP 37.65 35.93 36.77 STYLIP 82.12 79.95 81.02

(j) DTD (k) EuroSAT (l) UCF101

Base New HM Base New HM Base New HM

CLIP [20] 53.24 59.90 56.37 CLIP [20] 56.48 64.05 60.03 CLIP [20] 70.53 77.50 73.85
CoOp [27] 79.44 41.18 54.24 CoOp [27] 92.19 54.74 68.69 CoOp [27] 84.39 56.05 67.46
CoCoOp [26] 77.01 56.00 64.85 CoCoOp [26] 87.49 60.04 71.21 CoCoOp [26] 82.33 73.45 77.64
LASP [2] 81.40 58.60 68.14 LASP [2] 94.60 77.78 85.36 LASP [2] 84.77 78.03 81.26
MaPLe [9] 80.36 59.18 68.16 MaPLe [9] 94.07 73.23 82.35 MaPLe [9] 83.00 78.66 80.77

STYLIP-con 80.76 59.44 68.48 STYLIP-con 94.45 73.67 82.78 STYLIP-con 84.24 78.93 81.50
STYLIP-sty 81.23 60.94 69.64 STYLIP-sty 94.57 73.85 82.94 STYLIP-sty 84.51 79.05 81.69
STYLIP∗ 80.22 59.60 68.39 STYLIP∗ 94.33 73.46 82.60 STYLIP∗ 83.37 78.72 80.98
STYLIP 81.57 61.72 70.27 STYLIP 94.61 74.06 83.08 STYLIP 85.19 79.22 82.10
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Table 3. Analysis of the generalization from base to new classes
across domains. We show results on Office-Home with ClipArt
acting as the source domain, while others denote the target. The
model is trained (backbone CLIP ViT-B/16) using 16 shots from
the base classes. (In %)

Method

Office-Home

Base New

Clip Art Art Clip Art Product Real World

CLIP [20] 78.12 62.01 77.78 87.52 88.02
CoOp [27] 82.60 70.60 82.23 90.44 87.21
CoCoOp [26] 82.64 71.00 83.61 92.12 89.19
CLIP-Adapter [7] 80.00 73.19 83.00 92.11 89.53
DPL [25] 82.20 71.54 82.80 92.37 89.15
ProGrad [29] 82.41 72.00 83.29 92.11 89.585
STYLIP-con 82.67 72.10 84.39 92.17 90.24
STYLIP-sty 83.22 72.60 84.51 92.78 91.25
STYLIP* 83.90 73.48 85.07 92.60 90.77
STYLIP 84.33 74.60 87.25 93.00 91.42
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