
Supplementary for What Decreases Editing Capability?
Domain-Specific Hybrid Refinement for Improved GAN Inversion

A. Implementation Details

Architecture. In the Domain-Specific Segmentation mod-
ule, we use FaRL [1] and SLIC [2] as the parsing model and
superpixel algorithm. We use 1024 × 1024 StyleGAN2 as
face generator, which is trained on FFHQ dataset.

Hyper-parameters. In Domain-Specific Segmentation
module, we set two thresholds τ1 = 0.7 and τ2 = 0.8,
according to parsing results, respectively. We set a higher
threshold for eyes, nose, and mouse areas. For In Hybrid
Modulation Refinement, coarse inversion optimizes initial
latent codes for 40 steps. We add the additional modula-
tion feature at 11th layer amount 18 layers of 1024 × 1024
StyleGAN2. Adam optimizers with no weight decay and
betas(0.9, 0.999) are used for weight and feature modula-
tion, and learning rates are 0.0015 and 0.09, respectively.
The feature is optimized in 100 steps and weight is only
optimized in 50 steps for better editing results.

B. Runtime Analysis

One main concern of optimization-based methods is
time-consuming. Previous methods (i.e., PTI and SAM)
cost more than one minute per image, which is hardly ap-
plied. We next demonstrate that DHR dramatically outper-
forms all existing methods in terms of speed.

Settings. As PTI [3], SAM [4] and DHR are optimization-
based refinement inversion methods and gain better inver-
sion results, we compare their runtime and PSNR using
100 randomly selected images from CelebA-HQ test set.
All experiments are conducted on a single NVIDIA RTX
3090 GPU and i9-10900X CPU (superpixel algorithm us-
ing CPU). For PTI and SAM, we change the optimization
steps to get each data point, while the optimization process
for pivotal latent codes in PTI is fixed. For DHR, we fix the
coarse inversion steps (i.e., 40 steps), and change the fea-
ture modulation steps while weight modulation steps are set
to half. The result is shown in Figure 1.

Results. Compared to previous methods, DHR accelerates
the refinement process significantly and attains higher per-
formance (almost 33dB of PSNR). Although the overly long
modulation process may cause editing capability degrada-

Figure 1. Runtime Analysis. We compare three optimization-
based refinement methods using 100 CelebA-HQ test images. The
default configuration of each method is marked by a dashed box.
Our method greatly accelerates the refinement optimization pro-
cess and gains much higher performance. DHR only cost 7.5s to
achieve the previous SOTA.

tion, we experimentally find that 200/100 steps (20.1s with
29.19dB PSNR) for feature/weight modulation gain reason-
able results. Our method achieves previous SOTA using
only 7.5s, compared to 62.3s for PTI, and gains extroad-
inary results in 14s.

C. Effects of Domain-Specific Segmentation

We illustrate the difference between Domain-Specific
Segmentation (DSS) and invertibility segmenter in SAM [4]
in Figure 3. As invertibility segmenter consists of invertibil-
ity predictor and pretrained segmentation model, it has two
primary differences from DSS:

Semantic prior plays a significant role in invertibility
prediction. Since there is no semantic information, sim-
ple color block areas are easily misclassified, as can be seen
in Figure 2. The characters have high invertibility in W+

space. Our DSS draws on the semantic face prior from pre-
trained GAN, having better ability to distinguish “easy-to-
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Figure 2. Invertibility prediction in SAM [4].

Figure 3. Comparison between Domain-Specific Segmentation
and Invertibility Segmenter in SAM [4].

invert” (i.e., in-domain) and “hard-to-invert” (i.e., out-of-
domain).

General segmentation model can not segment complex
area. Another main difference is that SAM uses general
segmentation models to split areas, which can only distin-
guish pre-defined categories. In real-world images, there
are a large number of complex areas, such as hairpins, oc-
clusion, and microphones. We address it by using the su-
perpixel algorithm, which is required to partition image into
different areas and is category-agnostic.

This also verifies the idea of “partition and binarize”. We
use superpixel to split tens of areas and coarsely inverse to
binarize each of them. Hence, DDS is robust to real-world
images and attains promising segmentation results.

D. Additional Results
We further demonstrate additional inversion and editing

results:

• Figure 4: Comparison of “Smile” Editing.

• Figure 5: Comparison of “Young” Editing.

• Figure 6: Comparison of “Lipstick” Editing.

• Figure 7: Results of “Eye Closure” Editing.

• Figure 8: Results of “Wrinkles” Editing.

• Figure 9: Results of “Eyebrow Thickness” Editing.
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els compared to state-of-the-art superpixel methods. IEEE
transactions on pattern analysis and machine intelligence,
34(11):2274–2282, 2012. 1

[3] Daniel Roich, Ron Mokady, Amit H Bermano, and Daniel
Cohen-Or. Pivotal tuning for latent-based editing of real im-
ages. ACM Trans. Graph., 2021. 1

[4] Gaurav Parmar, Yijun Li, Jingwan Lu, Richard Zhang, Jun-
Yan Zhu, and Krishna Kumar Singh. Spatially-adaptive mul-
tilayer selection for gan inversion and editing. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 11399–11409, 2022. 1, 2



Figure 4. Comparison of the editing result with the previous methods in “Smile”.



Figure 5. Comparison of the editing result with the previous methods in “Young”.



Figure 6. Comparison of the editing result with the previous methods in “Lipstick”.



Figure 7. Inversion and “Eye Closure” editing results. The three columns represent Input, Inversion, and Edit.



Figure 8. Inversion and “Wrinkles” editing results. The three columns represent Input, Inversion, and Edit.



Figure 9. Inversion and “Eyebrow Thickness” editing results.
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