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1. Supplementary Material
1.1. Additional Experiments

Shortcuts Surface in the Early Epochs. In Fig. 1| we
present a comprehensive analysis of accuracy trends across
different demographic groups for the Wearing Necklace tar-
get (Fig. [Ic] and Fig. [Id| represent male individuals, while
Fig.[Ib]and Fig. [Idrepresent individuals wearing necklaces).
Our findings indicate that CFix effectively mitigates spurious
correlations from the early epochs and demonstrates a consis-
tent improvement in accuracy. In contrast, the ERM classifier
capitalizes on these spurious correlations and shows negligi-
ble improvement over time. We further extend this analysis
by providing a visual comparison between the biased clas-
sifier and our CFix approach in Fig. 3] Fig. 4} Fig.[5] and
Fig.[6] These figures reveal that the issue of lower accuracy
is not confined to underrepresented groups but is often a
byproduct of the learned model itself.

On the Number of Clusters. We conducted an ablation
study using the CelebA dataset to scrutinize the sensitivity
of ClusterFix to the number of clusters used for partition-
ing the feature space. The objective was to ascertain how
ClusterFix’s performance varies with the number of clusters.
Fig.[2a]displays the results, which indicate that the average
accuracy across groups plateaus when K > 8. This suggests
that increasing the number of clusters beyond this point does
not yield significant improvements in performance. How-
ever, we observed a decline in the accuracy of the worst-
performing group as the number of clusters increased. This
decline can be attributed to the inherent class imbalance in
the dataset, particularly in the positive partition (Wearing
Necklace = True), which is less populated than the negative
partition (Wearing Necklace = False). Increasing the number
of clusters in the positive partition is likely to create smaller,
noisier clusters that include outliers, making the model more

Table 1. Unbiased accuracy (%) on Colored MNIST dataset.

Target Bias ERM LfF [4] BPA [6] CFix GDRO [5]

Digit Color 74.48 85.15 8526  87.07 85.88

sensitive to these outliers and thereby reducing the accuracy
for the worst-performing group. To mitigate this issue, we
propose determining the optimal number of clusters for each
partition, as suggested by George [7]].

Sensitivity Analysis of the v Hyperparameter. We per-
formed a sensitivity analysis focusing on the v hyperparame-
ter in the context of Wearing Necklace classification. Fig.
elucidates the impact of varying v values, as defined in the
main paper. We specifically examined the disparity in accu-
racy between the worst and average performing groups. Our
results indicate that the accuracy of the worst-performing
group remains relatively stable across different -y values, par-
ticularly on real-world datasets like CelebA. Additionally,
Tab. [2] presents an ablation study that explores the role of -y
in the context of ERM pre-training.

Entropy Correlation. To further validate the insights dis-
cussed in the introduction of the paper, which form the foun-
dation of our re-weighting strategy, we present a rigorous
empirical proof that establishes a correlation between the
membership of samples in the critical group, denoted as z,
and the output entropy of the cluster classifiers ;. y as
defined in Eq. (2). Specifically, the output of the cluster clas-
sifier C,, for each sample (z, y) is determined by the softmax
function applied to the composition of C, and the feature
extractor F(x), which is then divided by the temperature
parameter ¢ as shown in Eq. (T).
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Figure 1. Temporal accuracy variations on the test set using ERM and CFix, observed for each group.
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Figure 2. Ablation study on number of clustersand gamma sensitivity Entropy and critical samples correlation

U = softmax(C, o F(z)/t) (1
H(z) = - Ulog, U )
i=1

To quantify the correlation between the output entropy
H (x) and the membership in the critical group z, we com-
pute the Area Under the Curve (AUC) for the relationship
between H(x) and z. Our experiments on the Waterbirds
dataset reveal that this correlation is not only present in mod-
els trained using Empirical Risk Minimization but is notably
pronounced in models trained using the ClusterFix approach.
This correlation tends to strengthen with higher values of
the temperature parameter ¢, as shown in Fig. These
findings suggest that the cluster classifier’s uncertainty is
also correlated with the critical samples, thereby reinforcing
the efficacy of cluster-based reweighting strategies.

Colored MNIST with ERM Pre-Training. In addition
to our primary experiments, we also conducted tests on the
Colored MNIST dataset, following the methodologies out-
lined in and [6]]. To ensure a fair comparison and to
emphasize the role of cluster classification, we employed
ERM pre-training for clustering, akin to other methods listed

in the table. Consequently, the only modification introduced
was in the reweighting procedure, which was handled by our
ClusterFix algorithm.

Comparison with Other Attributes and Methods in
CelebA. In Tab.[3|and Tab.[d] we present a comprehensive
comparison focusing on various attributes such as “blond
hair,” “heavy makeup,” and “gender,” which have also been
utilized by other methods for evaluation. Our results clearly
demonstrate that ClusterFix outperforms all other methods
across these attributes, thereby establishing its superiority in
mitigating biases.

On the Backbone Choice on Waterbirds. Tab. [5]illus-
trates a comparison between using a ResNet50 architecture
versus a ResNet18 architecture on the Waterbirds dataset.
Our findings indicate that the choice of backbone architec-
ture does not significantly impact the performance, thereby
validating the robustness of our ClusterFix algorithm.

Additional Examples of Explainability on CelebA.
Fig. 3| Fig. @ Fig. [l and Fig. [6] showcase additional ex-
amples of regions of interest identified by both the biased
ERM and our debiased ClusterFix methods. These exam-



Table 2. Unbiased accuracy (%) on the Colored MNIST dataset varying with the parameter ~y.

Target Bias =01 =05 =1 =5 ~4=10 ~+=20 ~=50
Digit Color 77.42 80.17 82.14 83.44  85.37 86.05 87.07
Table 3. Unbiased accuracy (%) on additional CelebA attributes.
Target Bias ERM PGI [1]] EIIL [2] DebiAN[3] BPA [6] CFix
Blond Hair Gender 79.80+£0.30 82.00+1.10 81.60+0.30 84.00+£0.14 90.18 £0.23 91.27 £ 0.06
Gender Heavy Makeup 85.10+0.01 85.40+3.40 84.00+1.20 87.80+1.30 - 90.18 £ 0.70
Gender Wearing Leapstick 86.60 £0.40 86.90+3.10 86.30+1.00 88.50 +1.11 - 88.06 +£0.12
Heavy Makeup Gender 71.90 £0.37 - - - 73.78 £0.25 76.65 £ 0.68
Table 4. Worst accuracy (%) on additional CelebA attributes.

Target Bias ERM PGI [1] EIIL [2] DebiAN[3] BPA [6] CFix
Blond Hair Gender 3790+ 1.10 46.10£4.90 40.90 £6.40 52.90+4.70 82.54+1.22 85.51 +0.62
Gender Heavy Makeup 45.40£0.01 46.90+13.1040.90 £4.50 56.00 +5.20 - 68.18 £ 0.70
Gender Wearing Leapstick 53.90 £ 1.20 56.00 + 11.7052.40 £3.20 61.70 £4.20 - 65.96 + 1.10
Heavy Makeup Gender 17.35 +4.60 - - - 39.84 £2.28 47.22+1.99

Table 5. Results on the Waterbirds dataset using ResNet18 (CFix) and ResNet50 (CFix*).

Unbiased Accuracy (%) Worst-Group Accuracy (%)
Unsupervised Sup. Unsupervised Sup.

Target Bias ERM LfF BPA CFix CFix* GDRO ERM LfF BPA CFix CFix* GDRO

Object Place 84.63 84.57 87.05 86.29 87.36 88.99 6239 61.68 71.39 74.03 72.27

80.82

ples further validate the efficacy of ClusterFix in identifying
meaningful features while mitigating biases.

1.2. Details on the Experimental Setting

Experimental Setup. For our experiments, we followed
a rigorous evaluation protocol. We selected the best-
performing model based on both metrics from the validation
set and used it as a checkpoint for evaluating the test set, in
line with the methodology described in [6]]. The detailed
ClusterFix learning procedure is provided in Algorithm [T}

On the Choice of CelebA Targets. In our experiments,
we followed the guidelines set by [6] and focused on gender
as the fixed bias attribute. We excluded 8 out of the 40
attributes due to the limited number of samples in the test set.
Among the remaining 32 attributes, 26 exhibited a significant
correlation with gender, as evidenced by a classification
accuracy gap exceeding 5% when compared to unbiased
accuracy [5)]. To ensure a comprehensive evaluation, we
selected the top 5 attributes with the highest accuracy gap

and the bottom 5 attributes with the lowest gap, as identified
in [6].
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Algorithm 1 ClusterFix Procedure

1:

— m = = s
L A

15:

16:
17:

Require: learning rate 79, momentum m, training steps 7', batch size B, number of clusters K, balance loss factor A,
k-means cluster assignment A, pre-trained feature extractor 7, whole network 0 = {F,T,C1 v }.

: Step 1: Cluster Assignment
cfork=1,..., K do

Py = {A(F(z)) = k}
Ny = | Pyl

: Step 2: Debiased Training
cfort=1,...,T do

fori=1,...,Bdo
Sample (x;,y;) ~ P
Q< Wk
a <+ (a1, ...,ap)

AR > v

0 0—ngs S0 VL +AVL,

fork=1,..., K do
Wg — (1 — m)wk + Nﬂk Z(Ly)epk L+ ALy
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Figure 3. Visualizing activation maps for Wearing Neacklace target.
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Figure 4. Visualizing activation maps for Receding Hairline target.
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Figure 5. Visualizing activation maps for Wavy Hair target.
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Figure 6. Visualizing activation maps for Wearing Hat target.
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