
Pixel-Grounded Prototypical Part Networks
Supplemental Material

Zachariah Carmichael1,2 Suhas Lohit2 Anoop Cherian2 Michael J. Jones2 Walter J. Scheirer1

1University of Notre Dame
2Mitsubishi Electric Research Laboratories

zcarmich@nd.edu, {slohit,anoop.cherian,mjones}@merl.com, walter.scheirer@nd.edu

Contents

A. Symbols and Functions 1

B. More Results 1

C. Additional Receptive Field Algorithm Details 1

D. Additional Pixel Space Mapping Algorithm De-
tails 3

E. Experiment Setup and Reproducibility 6

F. “Goldilocks” Zone Experimental Details 6

G. Similarity Function Formulation 7

H. Issues with PROTOPNET Code Base 7

I . Full Discussion of PROTOPNET Variants and Ex-
tensions 8

J. Additional Consistency and Stability Details 9

K. Additional Small Improvements 10

A. Symbols and Functions
Tables A1 and A2 describe the functions and symbols

used in this paper, respectively.

B. More Results
Figures B1 and B2 present the discovered “Goldilocks”

zone backbones evaluated in PIXPNET for CUB-200-2011
and Stanford Cars, respectively. As can be seen, the Pareto
front is mostly retained, demonstrating that the ImageNette
approach is a good proxy for backbone selection for PIX-
PNET. The results for various ImageNet-pre-trained Pro-
toPartNNs are provided in Table B3. Figures B5 and B6
shows more examples of explanations on CUB-200-2011

Function Description

φ The distance function
fcore The core neural network backbone
fadd The add-on layers to the backbone
f The feature encoding function
g The prototype layer
h The readout layer
v The similarity function
π The similarity map function
patches Yields patches from an embedded image
Ltotal The total loss function
Lxent The cross-entropy loss function
Lcls The cluster loss function
Lsep The separation loss function
Lh The readout loss function

Table A1. Functions used in this paper.

and Stanford Cars, respectively. We also include a video
with the supplemental material submission that demon-
strates the relevance ordering test for the CUB-200-2011
dataset.

C. Additional Receptive Field Algorithm De-
tails

Here, we provide addition description of are function
receptive field computation algorithm, FunctionalRF.
Some complexity of the algorithm comes from handling ar-
bitrary non-sequential architectures. FunctionalRF, takes
a neural network as input and outputs the exact receptive
field of every neuron in the neural network. Recall that
a neuron is a function of a subset of pixels defined by its
receptive field. FunctionalRF represents receptive fields
as hypercubes (multidimensional tensor slices). For con-
volutional neural networks, we have four dimensions, but
the batch size can safely be ignored. We use the notation
Ja, bK to denote the slice (discrete interval) between a and
b. The computation is outlined (see Algorithm 1) for image
data for simplicity – the algorithm works for any number
of dimensions or type of data. Given the directed acyclic

1

Symbol Shape Description

D – The prototype dimensionality
P – The number of prototypes
N – The number of samples
C – The number of classes
H – The height of a sample
W – The width of a sample
Hz – The height of z
Wz – The width of z
Hp – The height of a prototype
Wp – The width of a prototype
p D ×Hp ×Wp A prototype
P P ×D ×Hp ×Wp The tensor of all prototypes
z D ×Hp ×Wp A single patch (embedded vector)
Z D ×Hz ×Wz A tensor of embeddings
s P A set of similarity scores
S Hz/Hp ×Wz/Wp A similarity map for one prototype
D N × 3×H ×W A dataset
X N × 3×H ×W All samples in a dataset
x 3×H ×W A sample
Y – All ground truth labels
y – The ground truth label
ŷ C The predicted logits
ŷ – The prediction
λcls – Loss function coefficient for Lcls
λsep – Loss function coefficient for Lsep
λh – Loss function coefficient for Lh

Wh P × C The weight matrix of h
wh – An element of Wh

Table A2. Symbols used in this paper.

0 20 40 60 80 100
Mean Receptive Field Size (%)

0.3

0.4

0.5

0.6

0.7

0.8

Te
st

A
cc

ur
ac

y

layer3

layer4

maxpool2

maxpool3

maxpool4
maxpool5maxpool4 maxpool5

maxpool4

maxpool5

maxpool2

maxpool4 maxpool5

layer2

layer3

Model
resnext50 32x4d
resnext101 64x4d
vgg11
vgg13
vgg16
vgg19
wide resnet50 2

Figure B1. Our approach, PIXPNET, evaluation on CUB-200-
2011 with various backbones discovered by the ImageNette proxy
approach outlined in the main text. The Pareto front is given by
the dashed line.

computation graph of a neural network G, we can traverse
the topologically sorted graph node by node to satisfy input
dependencies. At the start, we initialize the receptive field
(rf attribute) of the input node v0 ∈ G as 1 × 1 × 1 slices
into the input image. Each consecutive node vk performs
operation-dependent indexing into the receptive fields of its

0 20 40 60 80 100
Mean Receptive Field Size (%)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Te
st

A
cc

ur
ac

y

layer3

layer4

maxpool2

maxpool3

maxpool4

maxpool5
maxpool4

maxpool5maxpool4

maxpool5

maxpool2

maxpool4
maxpool5

layer2

layer3

Model
resnext50 32x4d
resnext101 64x4d
vgg11
vgg13
vgg16
vgg19
wide resnet50 2

Figure B2. Our approach, PIXPNET, evaluation on Stanford Cars
with various backbones discovered by the ImageNette proxy ap-
proach outlined in the main text. The Pareto front is given by the
dashed line.

0 20 40 60 80 100
% Pixels Added Back

2.25

2.50

2.75

3.00

3.25

3.50

3.75

M
ea

n
Pr

ot
ot

yp
e

Si
m

ila
ri

ty

Method
Random
Ours
Upsample

Figure B3. Relative ordering test for a VGG13@maxpool4. The
original, random, and our pixel space mappings are compared. We
achieve the highest AUSC and the lowest %2R. PRP is not shown
because its implementation only supports ResNet models. The
black dashed line indicates the mean receptive field of maxpool4.

incoming nodes Uk. This indexing is operation-dependent
and is encapsulated by the function take from(·). For in-
stance, the slices for a 2D convolution with a 5×5 kernel,
stride of 1, and cin channels at output position 3, 3 would
be {{J1, cinK, J1, 5K, J1, 5K}} where Ja, bK denotes the slice
between a and b. After, we merge (merge(·)) as many hy-
percubes as possible into a larger hypercube (consider, e.g.,
one hypercube inside of another) to greatly reduce the space
and time complexities. Figure C7 gives several examples of
this merge operation. Finally, the receptive field-augmented
graph G is returned.

BBox D1 D2 D3 Model f
Expl.

Size +
Expl.

Size ± P MRF Accuracy ± Code
Avail.

Val.
Set

✗

✓ ✓ ✓

PIXPNET VGG19@maxpool5 10 10 2000 70.4 86.44 0.2 ✓ ✓

PIXPNET VGG16@maxpool5 10 10 2000 52.5 84.94 0.1 ✓ ✓

PIXPNET VGG13@maxpool5 10 10 2000 33.5 81.72 0.2 ✓ ✓

PIXPNET VGG16@maxpool4 10 10 2000 15.8 80.05 0.3 ✓ ✓

✓ ✗ ✓

SUPPORT PROTOPNET [38] ResNet152 180 35280 17640 100 87.30 – ✓ ✗

DEFORMABLE [7] ResNet152 180 35280 17640 100 86.50 – ✓ ✗

ST-PROTOPNET [38] ResNet152 20 3920 1960 100 85.30 – ✓ ✗

✓ ✓ ✗ ✓

ST-PROTOPNET [38] DenseNet161 20 3920 1960 100 92.70 0.2 ✓ ✗

TESNET [39] DenseNet161 20 3920 1960 100 92.60 0.3 ✓ ✗

PROTOPOOL [28] ResNet34 20 390 195 100 89.30 0.1 ✓ ✗

PROTOPNET [5] VGG19 20 3920 1960 100 87.40 0.3 ✓ ✗

PROTOTREE [23] ResNet34 22 390 195 100 86.60 0.2 ✓ ✗

PROTOPSHARE [29] ResNet34 960 960 480 100 86.38 – ✓ ✗

PROTO2PROTO [14] ResNet18 20 3920 1960 100 84.00 – ✓ ✗

✗
✗ ✗ ✗ VIT-NET [16] SwinT-B 12 126 63 100 95.00 – ✓ ✗

✗ ✗ ✓ PROTOPFORMER [40] CaiT-XXS-24 30 5880 2940 100 91.04 – ✓ ✗

Table B3. ProtoPartNN results on Stanford Cars with ImageNet used for pre-training. Columns D1, D2, and D3 correspond to the three
desiderata established in the main text. “BBox” indicates whether a method crops each image using a bounding box annotation. The best
results of ProtoPartNNs with and without such annotations are bold and underlined, respectively. Best results that are within one standard
deviation of each other are all emphasized. The table is split based on whether the method meets at least two desiderata.

0 20 40 60 80 100
% Pixels Added Back

2.0

2.5

3.0

3.5

M
ea

n
Pr

ot
ot

yp
e

Si
m

ila
ri

ty

Method
Random
Ours
Upsample
PRP

Figure B4. Relative ordering test for a ResNet18@layer2. The
original, random, and our pixel space mappings are compared. We
achieve the highest AUSC and the lowest %2R. The black dashed
line indicates the mean receptive field of layer2.

D. Additional Pixel Space Mapping Algorithm
Details

In order to compute a pixel space heat map, we pro-
pose an algorithm based on FunctionalRF rather than
naively upsampling an embedding space similarity map
Sij . Our approach uses the same idea as going from em-
bedding space to pixel space. Each pixel space heat map
Mij ∈ RH×W is initialized to all zeros (0H×W), and cor-
responds to a sample xi and a prototype pj . Let MS

ij be
the region of Mij defined by the receptive field of similar-
ity score S ∈ Sij . For each S, the pixel space heat map

Algorithm 1: FunctionalRF(G)
Input: G, the computation graph
Output: G, augmented with receptive field information

1 Topologically sort G;
// Initialize each input node rf

element as a 1×1×1 hypercube
2 v0.rfdij ← {{J1, 3K, Ji, iK, Jj, jK}};
3 for vk ∈ G do
4 Uk ← all incoming nodes of vk;

// Record slicing operations of vk
5 vk.rfdij ← vk.take from({uk.rf | uk ∈ Uk});

// Merge hypercubes
6 vk.rfdij ← merge(vk.rfdij);

7 return G

is updated as MS
ij ← max(MS

ij , S) where max(·) is an
element-wise maximum that appropriately handles the case
of overlapping receptive fields. Note that we weight S by
T (|ri|, |rj |, σT) (via broadcasting) where T generates a 2D
Gaussian kernel, | · | gives the length of a discrete inter-
val, and σT is the standard deviation of the kernel. The
first two arguments denote the height and width of the ker-
nel, respectively. We set σT to the larger of the height and
width. The intuition behind this approach is that a recep-
tive field is actually Gaussian [19] – pixels in the center are
more important, and pixels at the periphery are less impor-
tant. We stress that this does not affect localization and the
pixel space heat maps are largely unchanged without this

Sample Prototype
Corresponding
Image Patch Overlaid Heat Map

= 4.13

Contribution

= 4.08

= 4.01

= 3.96

Sample Prototype
Corresponding
Image Patch Overlaid Heat Map

= 4.45

Contribution

= 4.34

= 4.17

= 4.15

Sample Prototype
Corresponding
Image Patch Overlaid Heat Map

= 4.59

Contribution

= 4.43

= 4.13

= 3.98

Sample Prototype
Corresponding
Image Patch Overlaid Heat Map

= 4.96

Contribution

= 4.62

= 4.51

= 4.46

Sample Prototype
Corresponding
Image Patch Overlaid Heat Map

= 3.75

Contribution

= 3.75

= 3.41

= 3.35

Sample Prototype
Corresponding
Image Patch Overlaid Heat Map

= 4.65

Contribution

= 4.22

= 4.17

= 4.08

Sample Prototype
Corresponding
Image Patch Overlaid Heat Map

= 5.49

Contribution

= 5.42

= 4.67

= 4.61

Sample Prototype
Corresponding
Image Patch Overlaid Heat Map

= 3.88

Contribution

= 3.36

= 3.32

= 3.07

Figure B5. Examples of PIXPNET explanations on CUB-200-2011.

Sample Prototype
Corresponding
Image Patch Overlaid Heat Map

= 5.44

Contribution

= 5.12

= 5.11

= 5.1

Sample Prototype
Corresponding
Image Patch Overlaid Heat Map

= 4.69

Contribution

= 4.51

= 4.46

= 4.34

Sample Prototype
Corresponding
Image Patch Overlaid Heat Map

= 6.03

Contribution

= 5.71

= 5.39

= 5.37

Sample Prototype
Corresponding
Image Patch Overlaid Heat Map

= 6.01

Contribution

= 5.81

= 5.15

= 5.02

Sample Prototype
Corresponding
Image Patch Overlaid Heat Map

= 4.91

Contribution

= 4.87

= 4.82

= 4.7

Sample Prototype
Corresponding
Image Patch Overlaid Heat Map

= 5.77

Contribution

= 5.73

= 5.64

= 5.37

Sample Prototype
Corresponding
Image Patch Overlaid Heat Map

= 4.29

Contribution

= 4.24

= 4.12

= 3.85

Sample Prototype
Corresponding
Image Patch Overlaid Heat Map

= 4.42

Contribution

= 4.37

= 4.2

= 3.82

Figure B6. Examples of PIXPNET explanations on Stanford Cars.

Figure C7. Examples of index merging with 2D slices. Slices that
cannot be merged are retained as a set.

step. However, this does affect the relevance order testing
– without this Gaussian weighting step, the pixels within a
receptive field would all have the same value, so the most
important pixel in the region is selected arbitrarily. Select-
ing in the center and “spiraling” outwards is more faithful to
what is known about deep neural networks [19]. In experi-
ments, we also confirm that this step improves the relevance
ordering test scores, especially in the case of large recep-
tive fields. The full procedure (RFPixelSpaceMapping)
is shown in Algorithm 2.

Algorithm 2: RFPixelSpaceMapping(vk, S)
Input: vk, the embedding layer in G (augmented by

Algorithm 1)
Input: S, the similarity map for a prototype
Output: M , a pixel space heat map

1 M ← matrix of zeros ∈ RH×W ;
2 for rfdij ∈ vk.rf do
3 for (rd, ri, rj) ∈ rfdij do
4 Mrdrirj ←

max(Sdij × T (|ri|, |rj |, σT),Mrdrirj);

5 return M

E. Experiment Setup and Reproducibility
Hardware and Software The code for this paper was im-
plemented in Python and primarily relies on PyTorch [24]
and PyTorch Lightning [8]. The original PROTOPNET [5]
code was used to guide some development, but the majority
of code deviated (especially the training code which actu-
ally uses a validation split for validation and tuning). All ex-
periments were run on NVIDIA A10 GPUs. Unless stated
elsewhere, all experimental results are reported as the aver-
age across 10 trials. Our code will be made fully available
upon publication.
Data Augmentation For the CUB-200-2011 and Stan-
ford Cars datasets, we perform the following augmentations
to each training image:

1. Resize smallest dimension of image to 510 pixels with
bilinear interpolation

2. Gaussian blur with 5 × 5 kernel and random sigma in
the range [0.1, 5] (1/10 probability)

3. Randomly adjust sharpness by a factor of 1.5 (1/10
probability)

4. Randomly rotate image in the range [−15, 15] degrees
(1/3 probability)

5. Randomly distort the image perspective with a scale of
0.2 (1/3 probability)

6. Randomly shear the image by 10 degrees (1/3 proba-
bility)

7. Randomly flip the image horizontally (1/2 probability)

8. Randomly crop the image to 384 × 384 pixels

9. Downsample the image to 224 × 224 pixels with bi-
linear interpolation

10. Normalize the image to have the channel-wise mean
and standard deviation of the full data set

For ImageNette, steps 1 and 9 are omitted, and the random
crop is done to 224 × 224 pixels directly.

We use an augmentation factor which indicates how
many augmented samples are generated for each training
image. In PROTOPNET, 30 augmentations are generated for
each sample. In addition, PROTOPNET uses offline (static)
augmentation, whereas we use online augmentation.

Training The training procedure largely follows that of
PROTOPNET. For a warm-up period, we train just the add-on
layers fadd and the prototypes P . Thereafter, all layers are
trained. We use an exponential warm-up of the learning rate
and use a cosine annealing learning rate scheduler (without
restarts) [18]. Every k epochs, we perform the prototype
replacement procedure.

Hyperparameters All hyperparameters are listed in the
proceeding table.

F. “Goldilocks” Zone Experimental Details
For this experiment, we follow the same training proce-

dure as for PIXPNET, except for any ProtoPartNN-specific
training (e.g., prototype replacement). See the previous sec-
tion for data augmentation details. We select pre-packaged
and ImageNet pre-trained architectures from PyTorch [24]
to evaluate the intermediate layers of. Recall that the goal
of this experiment is to discover backbones suitable for PIX-
PNET by observing the Pareto front of the mean receptive
field and accuracy on ImageNette [9]. See the main text for

Name Value

Augmentation Factor 16
Validation Set Proportion 0.1

Pre-training ImageNet
λcls 0
λsep 0
φ Cosine Distance
ε 10−6

P C × 10
D 192

Hp 1
Wp 1

Learning Rate (fcore parameters) 0.0001
Learning Rate (fadd parameters) 0.003

Learning Rate (P) 0.003
Warm-Up Epochs 5

Learning Rate Scheduler (Warm-Up) Exponential
Learning Rate Scheduler Cosine

Weight Decay (All Parameters Except P) 0.001
Optimizer Adam
Batch Size 64

Epochs 20
Prototype Replacement Every 4 Epochs

Table E4. Table of PIXPNET hyperparameters used in experi-
ments.

discussion about this data set and justification for this ap-
proach. For each selected intermediate layer, the network
is dissected at that point and a new classification head is
appended which comprises a 1 × 1 2D adaptive average
pooling layer, a flattening of the unary dimensions, and a
fully-connected layer. The training procedure is carried out
for 10 epochs with a batch size of 32. The proceeding table
outlines the selected architectures and intermediate layers
that are evaluated.

G. Similarity Function Formulation

We reduce numerical error of the original similarity
function by reformulating it as:

v(d) = log

(
d+ 1

d+ ε

)
︸ ︷︷ ︸

Original formulation

= log

(
1

d+ ε
+ 1

)
︸ ︷︷ ︸

New formulation

. (1)

To validate its accuracy, we compare its scores across var-
ious values to the expected similarity scores with infinite
precision. We use the mpmath [21] library to implement
infinite precision. The table below compares the mean-
squared-error of our approach to the original and our ver-
sion of the similarity function. Our reformulation achieves
lower error, especially in the [1, 10] value range for both 32-
and 64-bit IEEE 754 floating point numbers.

Architecture Intermediate Layers

densenet121 conv0,norm0,relu0,pool0,denseblock1,
transition1,denseblock2,transition2,
denseblock3,transition3,denseblock4,norm5,
avgpool,classifier

densenet161
densenet169
densenet201

inception v3

Conv2d 1a 3x3,
Conv2d 2a 3x3,Conv2d 2b 3x3,maxpool1,
Conv2d 3b 1x1,Conv2d 4a 3x3,maxpool2,
Mixed 5b,Mixed 5c,Mixed 5d,Mixed 6a,
Mixed 6b,Mixed 6c,Mixed 6d,Mixed 6e,
Mixed 7c,avgpool,fc

resnet18

conv1,maxpool,layer1,layer2,layer3,layer4,
avgpool,fc

resnet34
resnet50
resnet101
resnet152
resnext101 32x8d
resnext101 64x4d
resnext50 32x4d
wide resnet50 2
wide resnet101 2

squeezenet1 0 conv1,maxpool1,maxpool2,maxpool3,
features,final convsqueezenet1 1

vgg11
conv1,maxpool1,maxpool2,maxpool3,
maxpool4,maxpool5,avgpool,classifier

vgg13
vgg16
vgg19

Table F5. All evaluated intermediate layers of backbone candidate
architectures.

Dtype Region MSE % ImprovedOriginal Ours

Float32

0, 1e-6 1.05e-13 1.04e-13 1.11%
1e-6, 1e-3 4.08e-14 3.97e-14 2.69%

1e-3, 1 3.56e-15 3.30e-15 7.41%
1, 10 1.42e-15 1.03e-15 27.13%

10, 1000 1.19e-15 1.18e-15 0.90%

Float64

0, 1e-6 3.61e-31 3.56e-31 1.14%
1e-6, 1e-3 1.40e-31 1.35e-31 3.09%

1e-3, 1 1.16e-32 1.05e-32 9.12%
1, 10 4.63e-33 3.27e-33 29.28%

10, 1000 4.12e-33 4.09e-33 0.65%

Table G6. The comparative numerical error of the similarity func-
tions: original and ours. Mean-squared-error (MSE) is shown for
IEEE 754 floating point data types. Our reformulation is more ac-
curate especially in the [1, 10] range of values.

H. Issues with PROTOPNET Code Base
Upon inspection of the original code base1, we discov-

ered that the test set accuracy is used to influence training of
PROTOPNET. In fact, neither PROTOPNET nor its extensions
for image classification that are mentioned in the paper em-
ploy a validation set in provided implementations. Part of
this is due to some code bases being derived from the orig-
inal implementation. PROTOPNET peeked at test set, which

1https://github.com/cfchen-duke/ProtoPNet

https://github.com/cfchen-duke/ProtoPNet

propagated to subsequent paper implementations. Accord-
ing to their implementation, they did not only have no val-
idation set, In addition, the provided code also used the ac-
curacy on the test set to influence when training should stop.

The relevant portions of code are shown below2. In
main.py, there is a training loop that saves the model
twice each epoch (once before prototype replacement and
once after). Each time that the model is saved, the accuracy
on the test set is stored with the model. In addition, if the
test accuracy is above 70%, then a message is logged to the
console stating that the test accuracy is above said target.

Listing 1. main.py Snippet
172 accu = t n t . t e s t (model= p p n e t m u l t i , d a t a l o a d e r =

t e s t l o a d e r ,
173 c l a s s s p e c i f i c = c l a s s s p e c i f i c , l o g = l o g)
174 save . s a v e m o d e l w c o n d i t i o n (model= ppnet , m o d e l d i r =

m o d e l d i r , model name= s t r (epoch) + ’ push ’ , accu =
accu ,

175 t a r g e t a c c u = 0 . 7 0 , l o g = l o g)

The save module is from the save.py. The relevant
snippet is shown below.

Listing 2. save.py Snippet
4 def s a v e m o d e l w c o n d i t i o n (model , m o d e l d i r , model name ,

accu , t a r g e t a c c u , l o g = p r i n t) :
5 ’ ’ ’
6 model : t h i s i s n o t t h e m u l t i g p u model
7 ’ ’ ’
8 i f accu > t a r g e t a c c u :
9 l o g (’\ t a b o v e {0 : . 2 f}%’ . format (t a r g e t a c c u * 100)

)
10 # t o r c h . save (o b j=model . s t a t e d i c t () , f=os . pa th .

j o i n (m o d e l d i r , (model name + ’{0 : . 4 f } . p t h
’) . f o r m a t (accu)))

11 t o r c h . s ave (o b j =model , f =os . p a t h . j o i n (m o d e l d i r ,
(model name + ’ {0 : . 4 f } . p t h ’) . format (accu)))

The purpose of the held-out test set is to properly mea-
sure generalization error, not be used to tune hyperparam-
eters nor influence training. Doing so is actually overfit-
ting the distribution of the test set rather than truly improv-
ing performance. This phenomenon unfortunately has been
long-standing in deep learning research, affecting progress
with prominent datasets, including CIFAR-10 and Ima-
geNet [12, 26, 27]. In our implementation, we employ a
proper validation set and tune hyperparameters only accord-
ing to accuracy on this split. This ensures that we are prop-
erly measuring generalization error.

In addition, we were able to approach but not reproduce
the originally reported accuracies, nor could some others,
using the provided code and instructions3.

2These verbatim snippets are taken from the git commit
c02e8568900f20df704f65aeb86f0dd1738ca785 (most re-
cent commit as of 2023-03-13)

3See ProtoPNet GitHub issue numbers 9, 10, 11 (the authors did not
respond) and [22].

I. Full Discussion of PROTOPNET Variants and
Extensions

The idea of sharing prototypes between classes has been
explored in PROTOPSHARE [29] (prototype merge-pruning)
and PROTOPOOL [28] (differential prototype assignment).
In PROTOTREE [23], the classification head is replaced by
a differentiable tree, also with shared prototypes. A pro-
cedure is also proposed to convert to a hard tree to im-
prove interpretability. An alternative embedding space is
explored in TESNET [39] based on Grassmann manifolds.
The authors additionally propose a new similarity function,
an orthogonality loss, and a subspace loss. A ProtoPartNN-
specific knowledge distillation approach is proposed in
PROTO2PROTO [14] by enforcing that student prototypes and
embeddings should be close to those of the teacher. DE-
FORMABLE PROTOPNET [7] extends the PROTOPNET archi-
tecture with deformable prototypes. ST-PROTOPNET [38]
learns support prototypes that lie near the classification
boundary and trivial prototypes that are far from the clas-
sification boundary.

Prototypes are
Image Patches

Part
Localization

Linear/Simple-Tree
Case-Based Reasoning

ViT-NeT

ProtoPFormer

Semi-ProtoPNet

SDFA-SA-ProtoPNet

ProtoPNet
TesNet

ProtoPShare
Gen-ProtoPNet

ProtoTree
Deformable

Quasi-ProtoPNet
NP-ProtoPNet
Ps-ProtoPNet
ST-ProtoPNet
XProtoNet
ProtoPool
HPNet

Figure I8. Proposed desiderata of ProtoPartNNs: part localization,
linear/simple-tree case-based reasoning, and prototypes are image
patches. Architectures at the intersection of all three desiderata
are considered true ProtoPartNNs. Only architectures for image
classification tasks are shown.

PROTOPNET has also been extended for graphs. PROT-
GNN [41] is an adaptation for graph classification and is
built on by PXGNN [6], which extends it for node classi-
fication. Simultaneously, GCN-{TESNET,PROTOPNET} [25]
was also proposed for graph and node classification. Like-
wise PROSENET [20], extends the architecture for sequen-
tial data and PROTOSEG [30] can handle supervised image
segmentation tasks. PROTOPNET has been adapted to task-
specific applications, including EEG data (PROTOPMED-
EEG [3]), Earth science data (PROTOLNET [2]), and

deepfake detection (DPNET [37]). There have been a
handful of PROTOPNET extensions tailored for diagnos-
ing the chest CT scans of COVID-19 patients This in-
cludes QUASI-PROTOPNET [31] (removes non-class weight
connections in h), NP-PROTOPNET [34] (fixes weights in
h to +1 and −1 for same- and non-class connections),
GEN-PROTOPNET [32] (uses larger prototype kernel sizes),
PS-PROTOPNET [33] (combines GEN-PROTOPNET and NP-
PROTOPNET), and XPROTONET [15] (prototypes are com-
pared with dynamically-sized feature patches).
ProtoPartNN Tools A few tools have also been proposed.
In PROTOPDEBUG [4], a concept-level debugger for PRO-
TOPNET is proposed in which a human supervisor, guided
by model explanations, removes part-prototypes that have
learned shortcuts or confounds. In [22], a methodology is
developed to enhance ProtoPartNN explanations with color,
hue, saturation, shape, texture, and contrast information.

In an attempt to improve PROTOPNET visualizations, an
extension of layer-wise relevance propagation [1], Proto-
typical Relevance Propagation (PRP), is proposed to create
more model-aware explanations [11]. PRP is quantitatively
more effective in debugging erroneous prototypes and as-
signing pixel relevance than the original approach.

ProtoPartNN-Like Methods The following papers are
inspired by PROTOPNET but cannot be considered to be the
same class of model. This is due to not fulfilling at least one
of the proposed ProtoPartNN desiderata.

VIT-NET [16] combines a vision transformer (ViT) with
a neural tree decoder that learns prototypes. However, its
training does not employ prototype pushing and has ad-
ditional layers after the embedding layer that modify the
embedding space. This breaks the mapping back to pixel
space.

In another transformer-based approach, PROTOP-
FORMER [40] exploits the inherent architectural features
(local and global branches) of ViTs. The prototype layer
has both local and global prototypes, and a focal loss
concentrates local prototypes on heterogeneous regions of
the foreground. However, the training procedure of the
method removes prototype replacement.

SEMI-PROTOPNET [36] fixes the readout weights as NP-
PROTOPNET does and is applied to classification of defec-
tive structures in power distribution networks. However, the
training procedure of the method also skips over prototype
replacement.

In SDFA-SA-PROTOPNET [13], a shallow-deep feature
alignment (SDFA) module aligns the similarity structures
between deep and shallow layers. In addition, a score
aggregation (SA) module aggregates similarity scores of
prototypes in a class-wise manner to avoid learning inter-
class information. Notably, the authors attempt to quantita-
tively evaluate the interpretability of prototype-based expla-
nations rather than relying on qualitative examples as many

other extensions have done. We discuss the proposed met-
rics in the main text. Once again, the training procedure
omits prototype replacement.

Throughout each of these works, the main justification
for removing prototype replacement is that it harms task ac-
curacy.

PROTOVAE [10] is an extension of PROTOPNET for vari-
ational auto-encoders (VAEs). It outperforms PROTOPNET

on a variety of classification tasks. It uses an orthogonality
loss for intra-class diversity (same as TESNET). However,
it does not employ prototype replacement, opting to rather
use a decoder used to visualize prototypes.

Retrospective on Extensions Despite all these efforts, all
extensions still have fundamental issues with object part lo-
calization, pixel space grounding, and heat map visualiza-
tions. We discuss what these issues are in detail in the main
text.

J. Additional Consistency and Stability Details
For the CUB-200-2011 dataset, there are 15 object parts:

back, beak, belly, breast, crown, forehead, left eye, left leg,
left wing, nape, right eye, right leg, right wing, tail, and
throat. However, we treat the left and right versions of an
object as the same object as 1) semantically, they are the
same object, 2) we do not want to penalize ProtoPartNNs
for learning invariance to flips or rotations, and 3) data aug-
mentation flips images, which makes lefts look like rights
(and vice versa). In addition, owing to data preprocessing,
some object parts are not visible in images that are visible
in the uncropped image. Naturally, we do not penalize Pro-
toPartNNs for not matching with parts that are not visible.

Limitations The consistency and stability metrics ignore
the localization capability of ProtoPartNNs and arbitrarily
set the localization window to 72 × 72 pixels, centered
around the localization bounding box midpoint. In addi-
tion, the threshold of 0.8 is arbitrary for a prototype to be
consistent. We argue that a soft score (the average of the
prototype-object coinciding frequencies without threshold-
ing) makes far more sense. It can be interpreted as the av-
erage consistency of all prototypes, rather than the propor-
tion of prototypes that are at least 80% consistent. When
computing these soft scores, we noticed that the majority of
them were in the [0.6, 0.8] range. Last, the metric relies on
human object part annotations – in the case of CUB-200-
2011, all annotations are of bird parts. However, it is well-
known that prototypes learn backgrounds and other fore-
ground objects that are also discriminatory (such as oceans,
tree branches, and human hands) [17, 35]. Prototypes may
be consistent (and stable), but associated with the wrong
part of the image just because of the 1) limited part annota-
tions, and 2) the arbitrary 72 × 72 pixel window. Nonethe-
less, the metrics do allow for comparative interpretability

evaluation between ProtoPartNNs. Further information on
the consistency and stability metrics is available in our code
implementation as well as [13].

K. Additional Small Improvements
We noticed that the magnitude of feature maps always

dictates prototype similarity when using Euclidean dis-
tance. Using cosine distance eliminates the influence of
magnitude on prototype similarity.

In PROTOPNET, the incorrect gain and initialization
method is used in the initialization of the convolutional
weights in fadd before the sigmoid activation. The original
implementation uses a Kaiming normal initialization with a
gain that is intended for the ReLU activation. Instead, we
use the Xavier normal initialization with a gain of one.

References
[1] Sebastian Bach, Alexander Binder, Grégoire Montavon,

Frederick Klauschen, Klaus-Robert Müller, and Wojciech
Samek. On pixel-wise explanations for non-linear classi-
fier decisions by layer-wise relevance propagation. PloS one,
10(7):e0130140, 2015. 9

[2] Elizabeth A. Barnes, Randal J. Barnes, Zane K. Martin, and
Jamin K. Rader. This looks like that there: Interpretable neu-
ral networks for image tasks when location matters. Artificial
Intelligence for the Earth Systems, 1(3):e220001, 2022. 8

[3] Alina Jade Barnett, Zhicheng Guo, Jin Jing, Wendong Ge,
Cynthia Rudin, and M. Brandon Westover. Mapping the
ictal-interictal-injury continuum using interpretable machine
learning. arXiv, 2022. 8

[4] Andrea Bontempelli, Stefano Teso, Fausto Giunchiglia, and
Andrea Passerini. Concept-level debugging of part-prototype
networks. In International Conference on Learning Repre-
sentations, ICLR. OpenReview, 2023. 9

[5] Chaofan Chen, Oscar Li, Daniel Tao, Alina Barnett, Cynthia
Rudin, and Jonathan Su. This looks like that: Deep learning
for interpretable image recognition. In Hanna M. Wallach,
Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-
Buc, Emily B. Fox, and Roman Garnett, editors, Neural In-
formation Processing Systems, NeurIPS, pages 8928–8939,
2019. 3, 6

[6] Enyan Dai and Suhang Wang. Towards prototype-based self-
explainable graph neural network. arXiv, 2022. 8

[7] Jon Donnelly, Alina Jade Barnett, and Chaofan Chen. De-
formable ProtoPNet: An interpretable image classifier us-
ing deformable prototypes. In Conference on Computer Vi-
sion and Pattern Recognition, CVPR, pages 10255–10265.
IEEE/CVF, 2022. 3, 8

[8] William Falcon and The PyTorch Lightning team. Py-
Torch Lightning, 3 2019. https://github.com/
Lightning-AI/lightning. 6

[9] FastAI. Imagenette. https://github.com/fastai/
imagenette, 2020. 6

[10] Srishti Gautam, Ahcene Boubekki, Stine Hansen,
Suaiba Amina Salahuddin, Robert Jenssen, Marina M.-
C. Höhne, and Michael Kampffmeyer. ProtoVAE: A

trustworthy self-explainable prototypical variational model.
In Neural Information Processing Systems, NeurIPS, 2022.
9

[11] Srishti Gautam, Marina M.-C. Höhne, Stine Hansen, Robert
Jenssen, and Michael Kampffmeyer. This looks more like
that: Enhancing self-explaining models by prototypical rel-
evance propagation. Pattern Recognition, 136:1–13, 2023.
9

[12] Dan Hendrycks, Kevin Zhao, Steven Basart, Jacob Stein-
hardt, and Dawn Song. Natural adversarial examples. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 15262–15271, 2021. 8

[13] Qihan Huang, Mengqi Xue, Wenqi Huang, Haofei Zhang,
Jie Song, Yongcheng Jing, and Mingli Song. Evaluation
and improvement of interpretability for self-explainable part-
prototype networks. In Proceedings of the IEEE/CVF In-
ternational Conference on Computer Vision (ICCV), pages
2011–2020, October 2023. 9, 10

[14] Monish Keswani, Sriranjani Ramakrishnan, Nishant Reddy,
and Vineeth N. Balasubramanian. Proto2Proto: Can you rec-
ognize the car, the way I do? In Conference on Computer
Vision and Pattern Recognition, CVPR, pages 10223–10233.
IEEE/CVF, 2022. 3, 8

[15] Eunji Kim, Siwon Kim, Minji Seo, and Sungroh Yoon.
XProtoNet: Diagnosis in chest radiography with global
and local explanations. In Conference on Computer Vi-
sion and Pattern Recognition, CVPR, pages 15719–15728.
CVF/IEEE, 2021. 9

[16] Sangwon Kim, Jae-Yeal Nam, and ByoungChul Ko. Vit-
net: Interpretable vision transformers with neural tree de-
coder. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song,
Csaba Szepesvári, Gang Niu, and Sivan Sabato, editors, In-
ternational Conference on Machine Learning, ICML, vol-
ume 162 of Proceedings of Machine Learning Research,
pages 11162–11172. PMLR, 2022. 3, 9

[17] Sunnie S. Y. Kim, Nicole Meister, Vikram V. Ramaswamy,
Ruth Fong, and Olga Russakovsky. HIVE: evaluating the
human interpretability of visual explanations. In Shai Avi-
dan, Gabriel J. Brostow, Moustapha Cissé, Giovanni Maria
Farinella, and Tal Hassner, editors, European Conference on
Computer Vision, ECCV, volume 13672 of Lecture Notes in
Computer Science, pages 280–298. Springer, 2022. 9

[18] Ilya Loshchilov and Frank Hutter. SGDR: Stochastic gradi-
ent descent with warm restarts. arXiv, 2016. 6

[19] Wenjie Luo, Yujia Li, Raquel Urtasun, and Richard S.
Zemel. Understanding the effective receptive field in deep
convolutional neural networks. In Daniel D. Lee, Masashi
Sugiyama, Ulrike von Luxburg, Isabelle Guyon, and Roman
Garnett, editors, Advances in Neural Information Process-
ing Systems 29: Annual Conference on Neural Information
Processing Systems 2016, December 5-10, 2016, Barcelona,
Spain, pages 4898–4906, 2016. 3, 6

[20] Yao Ming, Panpan Xu, Huamin Qu, and Liu Ren. Inter-
pretable and steerable sequence learning via prototypes. In
Ankur Teredesai, Vipin Kumar, Ying Li, Rómer Rosales,
Evimaria Terzi, and George Karypis, editors, SIGKDD Inter-
national Conference on Knowledge Discovery & Data Min-
ing, KDD, pages 903–913. ACM, 2019. 8

https://github.com/Lightning-AI/lightning
https://github.com/Lightning-AI/lightning
https://github.com/fastai/imagenette
https://github.com/fastai/imagenette

[21] mpmath Contributors. Mpmath: A python library for
arbitrary-precision floating-point arithmetic, 2022. https:
//github.com/mpmath/mpmath. 7

[22] Meike Nauta, Annemarie Jutte, Jesper C. Provoost, and
Christin Seifert. This looks like that, because... explain-
ing prototypes for interpretable image recognition. In Ma-
chine Learning and Principles and Practice of Knowledge
Discovery in Databases - International Workshops of ECML
PKDD, volume 1524 of Communications in Computer and
Information Science, pages 441–456. Springer, 2021. 8, 9

[23] Meike Nauta, Ron van Bree, and Christin Seifert. Neural
prototype trees for interpretable fine-grained image recogni-
tion. In Conference on Computer Vision and Pattern Recog-
nition, CVPR, pages 14933–14943. CVF/IEEE, 2021. 3, 8

[24] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An im-
perative style, high-performance deep learning library. Ad-
vances in neural information processing systems, 32, 2019.
6

[25] Alessio Ragno, Biagio La Rosa, and Roberto Capobianco.
Prototype-based interpretable graph neural networks. IEEE
Transactions on Artificial Intelligence, pages 1–11, 2022. 8

[26] Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and
Vaishaal Shankar. Do CIFAR-10 classifiers generalize to
CIFAR-10? arXiv, 2018. 8

[27] Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and
Vaishaal Shankar. Do ImageNet classifiers generalize to Im-
ageNet? In International conference on machine learning,
pages 5389–5400. PMLR, 2019. 8

[28] Dawid Rymarczyk, Lukasz Struski, Michal Górszczak, Ko-
ryna Lewandowska, Jacek Tabor, and Bartosz Zielinski. In-
terpretable image classification with differentiable proto-
types assignment. In Shai Avidan, Gabriel J. Brostow,
Moustapha Cissé, Giovanni Maria Farinella, and Tal Has-
sner, editors, European Conference on Computer Vision,
ECCV, volume 13672 of Lecture Notes in Computer Science,
pages 351–368. Springer, 2022. 3, 8

[29] Dawid Rymarczyk, Lukasz Struski, Jacek Tabor, and Bar-
tosz Zielinski. Protopshare: Prototypical parts sharing for
similarity discovery in interpretable image classification. In
Feida Zhu, Beng Chin Ooi, and Chunyan Miao, editors,
SIGKDD Conference on Knowledge Discovery and Data
Mining, KDD, pages 1420–1430. ACM, 2021. 3, 8

[30] Mikołaj Sacha, Dawid Rymarczyk, Łukasz Struski, Jacek
Tabor, and Bartosz Zieliński. ProtoSeg: Interpretable se-
mantic segmentation with prototypical parts. In Winter Con-
ference on Applications of Computer Vision (WACV), pages
1481–1492. IEEE/CVF, January 2023. 8

[31] Gurmail Singh. Think positive: An interpretable neural net-
work for image recognition. Neural Networks, 151:178–189,
2022. 9

[32] Gurmail Singh and Kin Choong Yow. An interpretable deep
learning model for covid-19 detection with chest x-ray im-
ages. IEEE Access, 9:85198–85208, 2021. 9

[33] Gurmail Singh and Kin-Choong Yow. Object or background:
An interpretable deep learning model for COVID-19 detec-

tion from CT-scan images. Diagnostics, 11(9):1732, Sep
2021. 9

[34] Gurmail Singh and Kin Choong Yow. These do not look
like those: An interpretable deep learning model for image
recognition. IEEE Access, 9:41482–41493, 2021. 9

[35] Poulami Sinhamahapatra, Lena Heidemann, Maureen Mon-
net, and Karsten Roscher. Towards human-interpretable pro-
totypes for visual assessment of image classification models.
arXiv, 2022. 9

[36] Stéfano Frizzo Stefenon, Gurmail Singh, Kin Choong Yow,
and Alessandro Cimatti. Semi-ProtoPNet deep neural net-
work for the classification of defective power grid distribu-
tion structures. Sensors, 22(13):4859, 2022. 9

[37] Loc Trinh, Michael Tsang, Sirisha Rambhatla, and Yan
Liu. Interpretable and trustworthy deepfake detection via dy-
namic prototypes. In Winter Conference on Applications of
Computer Vision, WACV, pages 1972–1982. IEEE, 2021. 9

[38] Chong Wang, Yuyuan Liu, Yuanhong Chen, Fengbei Liu, Yu
Tian, Davis McCarthy, Helen Frazer, and Gustavo Carneiro.
Learning support and trivial prototypes for interpretable im-
age classification. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision (ICCV), pages 2062–
2072, October 2023. 3, 8

[39] Jiaqi Wang, Huafeng Liu, Xinyue Wang, and Liping Jing.
Interpretable image recognition by constructing transparent
embedding space. In International Conference on Computer
Vision, ICCV, pages 875–884. IEEE/CVF, 2021. 3, 8

[40] Mengqi Xue, Qihan Huang, Haofei Zhang, Lechao Cheng,
Jie Song, Minghui Wu, and Mingli Song. ProtoPFormer:
Concentrating on prototypical parts in vision transformers
for interpretable image recognition. arXiv, 2022. 3, 9

[41] Zaixi Zhang, Qi Liu, Hao Wang, Chengqiang Lu, and
Cheekong Lee. ProtGNN: Towards self-explaining graph
neural networks. In Conference on Innovative Applications
of Artificial Intelligence, IAAI, pages 9127–9135. AAAI
Press, 2022. 8

https://github.com/mpmath/mpmath
https://github.com/mpmath/mpmath

	. Symbols and Functions
	. More Results
	. Additional Receptive Field Algorithm Details
	. Additional Pixel Space Mapping Algorithm Details
	. Experiment Setup and Reproducibility
	. ``Goldilocks'' Zone Experimental Details
	. Similarity Function Formulation
	. Issues with ProtoPNet Code Base
	. Full Discussion of ProtoPNet Variants and Extensions
	. Additional Consistency and Stability Details
	. Additional Small Improvements

