
3D Reconstruction of Interacting Multi-Person in Clothing from a Single Image
-Supplementary-

In this supplementary material, we provide the details of

the implementation and network architectures used in our

pipeline; ablations study on 2D contact networks and 3D

reconstruction results; and more results with in-the-wild im-

ages. Please also refer to the supplementary video.

1. Implementation Details
We design fz with ResNet encoder [4] and one fully-

connected layer. f 3D consists of 3 sequences of fully-

connected layers, 3D convolution layers and last one fully-

connected layer. The 2D image-aligned feature extractor

f 2D consists of a stacked hourglass [10] with 1 stack. Ag-

gregation network f agg is designed with 5 fully-connected

layers. Please see Supple. for the detailed architectures of

our networks.

For training the networks except for f 3D, we use Adam

optimizer [5] with learning rate 1e−3. To train f 2D and f agg,

we sample the 2,250 points with 2,000 near the ground-truth

mesh surface and 250 uniformly sampled. We train fz for

100 epochs, and f 2D and f agg for 300 epochs. λc, λp, λr,

and λg are set to 500, 10, 100, and 0.001, respectively.

2. Network Detail
2.1. Generation

Latent Feature Encoder fz predicts latent feature vector

zshape from a single RGB image. It consists of ResNet en-

coder [4] and one fully-connected layer. The ResNet en-

coder outputs 2048-dim intermediate feature from image

Ii ∈ R
256×256×3. Then, the fully-connected layer extracts

64-dim latent feature vectors from the intermediate feature.

3D Voxel Feature Generator f 3D generates 3D voxel fea-

ture F3D ∈ R
64×16×64×64 from estimated latent feature

vector zshape. We borrow its architecture from gDNA [2].

It is composed of three sequences consisting of fully-

connected layers and 3D convolution layers, and one fully-

connected layer at the end.

2D Image-aligned Feature Extractor f 2D extracts 2D

image-aligned feature F2D ∈ R
16×512×512 from normal

map Ni ∈ R
1024×1024×3. We use a stacked hourglass [10]

with 1 stack for its architecture.

Aggregation Network f agg estimates an occupancy value

Input type
IoU

Segm. Signature

RGB 0.44 0.12

RGB + h 0.66 0.15

RGB + mpart 0.73 0.20

RGB + h + mpart 0.78 0.31
RGB + h + part segm. [6] 0.75 0.22

Table 1. Comparison the contact estimation performance on Mul-

tiHuman dataset [16] using different input types. We compare five

input types: (1) RGB image only, (2) RGB image and keypoint

heatmap h, (3) RGB image and semantic part segmentation mask

mpart, (4) RGB image, h, and mpart, and (5) RGB image, h, and

part segmentation obtained from [6].

at 3D point p, from a concatenated feature [F3D
pc

, F2D
π(p),

pc]. It consists of 5 fully-connected layers with SoftPlus

activation function [15]. In the fourth layer, we use a skip

connection. Its intermediate channel is 256.

2.2. Contact Estimation

Contact Discriminator fContact predicts whether two peo-

ple are contacted to each other or not, from a concatenated

image [I, mpart
1 , mpart

2 , h1, h2]. It consists of ResNet en-

coder [4] and two fully-connected layers with ReLU activa-

tion function [9]. We modify the input channel of the first

2D convolution layer in a way that it can use the concate-

nated images as input.

Contact Segmentation Estimator fCS estimates contact

segmentation s ∈ R
75×1 from a concatenated image [I,

mpart
1 , mpart

2 , h1, h2]. It consists of ResNet encoder [4]

and five fully-connected layers with ReLU activation func-

tion [9]. We modify the input channel of the first 2D convo-

lution layer to make it able to use the concatenated images

as input.

Contact Signature Estimator f sig outputs Fsig ∈ R
75×10

to estimate contact signature C ∈ R
75×75. It consists of two

fully-connected layers with ReLU activation function [9].

We compute contact signature C by Fsig
1 × Fsig

2
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Figure 1. Comparison on the difference between separate per-

formance measuring on the visible and invisible body parts. (a)

shows RGB input image. We compare our method with PIFu [11],

PIFuHD [12], ICON [13], and DMC [16]. “Visible” denotes the

performance measuring on the visible body parts. “Invisible” de-

notes the performance measuring on the occluded body parts.

Method

Baseline Ours

Input

Single 1.41 1.37
Occluded single 1.66 1.63
Two natural-inter 1.22 1.17
Two closely-inter 1.91 1.33

Three 1.82 1.54

Table 2. Comparison of our method with the baseline that predicts

zshape on MultiHuman dataset [16], based on Chamfer Distance

metric.

3. Ablation Study

3.1. Comparison on 2D Contact Network

We investigate the performance of the contact estimation

using different input types. We use intersection over union

(IoU) as our evaluation metric. Tab. 1 shows that using ad-

ditional input types, such as keypoint heatmap h and se-

mantic part segmentation mask mpart, improves the perfor-

mance of contact estimation compared to using only RGB

images. Specifically, adding h to the RGB image improves

the performance by 50% on contact segmentation and 25%

on contact signature, while adding mpart improves the per-

formance by 65% on contact segmentation and 67% on con-

tact signature. Finally, using all three input types results in

the best performance, with an improvement of 77% on con-

tact segmentation and 158% on contact signature. We also

compare with a previous approach [3] which uses 2D part

segmentation. We use the method proposed by Lin et al. [6]

for 2D part segmentation estimation. It improves the per-

formance compared to using RGB and h, but it does not

outperform the performance of the method which uses our

final input type (RGB+h+mpart).

Method Scenario initial refined

DMC
Two natural-inter

2.53 2.50

Ours 1.19 1.17
DMC

Two close-inter
3.24 3.10

Ours 1.84 1.34
DMC

Three people
3.81 3.76

Ours 1.76 1.54

Table 3. Comparison with DMC on MultiHuman dataset [16],

based on Chamfer Distance metric. ‘initial’ and ‘refined’ denote

initial SMPL from [1] and SMPL refined by our refinement mod-

ule.

(a) Input (b) (c) t+ (d) T

Figure 2. The 3D reconstruction results without and with fContact.

3.2. Comparison on Baseline Predicting zshape

We compare our full model to the baseline, fz , that pre-

dicts zshape. Predicting only fzshape cannot outperform the

performance of original gDNA [2]. With Chamfer Distance

error in Tab. 2, our proposed networks, such as 2D image-

aligned feature extractor and aggregation network, as well

as the refinement module, enhance the level of detail and

global coherence of the human mesh.

3.3. Effectiveness of Refinement Module

Based on the comparison with DMC in Tab. 3, we high-

light that our refinement module is compatible with any

off-the-shelf mesh reconstruction method to improve its ac-

curacy. Performance improvement through the refinement

module is observed for all methods and scenarios.

3.4. Performance on the Occluded and Visible Body
Parts

Fig. 1 shows the difference between separate perfor-

mance measuring on the visible and invisible body parts for

a representative example. We use point-to-surface (P2S) as

our evaluation metric. “Visible” denotes the P2S measur-

ing on the visible body parts. “Invisible” denotes the P2S

measuring on the invisible body parts occluded by other

people. While the state-of-the-art methods exhibit a sig-

nificant performance gap between the visible and invisible

parts, our method demonstrates a small difference in per-

formance between the two areas. Furthermore, our method

outperforms all the compared approaches in terms of overall

performance.



4. More Qualitative Results

We visualize our contact prediction results on the front

and back of the mesh as shown in Fig. 5. The columns show

the contact estimator input, bounding boxes colored accord-

ing to the contact prediction results, and contact prediction

results on the mesh, respectively. (Note that bounding boxes

are not estimated results, and just make it easier to find indi-

viduals in the input image who correspond to the contact re-

sult.) The contact estimator predict the contact region such

as hand, head, back, arm, etc. Sometimes, the contact pre-

diction results are not accurate due to depth ambiguity, as

shown in the fourth row. The reconstruction results for each

image in Fig. 5 are presented in Figs. 6 and 7.

We compare our method with PIFu [11] and DMC [16]

on in-the-wild images and MultiHuman image [16] in Fig. 6

and Fig. 7. We use COCO dataset [7] to compare the qual-

itative results on in-the-wild images. In Fig. 6, the first to

third rows of input images are in-the-wild images, while the

fourth row shows result on a MultiHuman image. The first

and fourth rows show the front-view and back-view results

side by side. The second and third rows show the front-view

and back-view results vertically. In Fig. 7, all results are

presented in a vertical format, displaying both front-view

and top-view results for each row on in-the-wild images.

PIFu does not consider the depth location, and therefore, it

can not represent the perspective distance(i.e. large for near

and small for far). In addition, it can not reconstruct the

3D geometry for the invisible parts. DMC generates a rela-

tively complete human mesh when compared to PIFu. Nev-

ertheless, the meshes reconstructed by DMC are coarse and

lack some parts. Conversely, our method reconstructs the

complete and detailed human mesh, even in the presence of

occlusions.

5. Inference speed

For comparison, PIFu [11] takes 5 seconds, and

DMC [16] takes 41 seconds to generate a clothed human

mesh. In contrast, our model, excluding the contact-based

refinement, requires 6 seconds to create a clothed human

mesh using the Marching Cubes algorithm [8] from an oc-

cupancy field. Additionally, our refinement module takes

58 seconds to refine two meshes based on contacts. These

inferences were performed on an RTX Titan GPU.

6. Training data

We train our network using THuman2.0 [14] dataset. For

the training images, we augment the images by masking

them with the segmentation masks of humans to simulate

occlusion, thereby enabling the model to learn how to han-

dle partially occluded humans. This is illustrated in Fig. 3.

Furthermore, we use color-jitter for data augmentation.

Figure 3. Training data. Left shows an original image and right

shows a masked input image.

(a) Input (c) Contact prediction (d) Result(b) Initial SMPL (e) GT

Figure 4. Failure case: a strong occlusion leads to the failure of

contact prediction (left arm and right chest) and inaccurate 3D re-

construction results. Left to right: input, initial SMPL, contact

prediction result, reconstruction result, and ground-truth.

7. Failure Case

In Fig. 4, our method demonstrates weak performance in

the presence of strong occlusion which leads to the failure

of contact estimation and inaccurate 3D mesh reconstruc-

tion.
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PIFu DMC OursInput
Figure 6. Results comparison on in-the-wild images and MultiHuman image [16]. We compare our method with PIFu [11] and DMC [16].

We visualize the results in front-view and back-view.



PIFu DMC OursInput O
Figure 7. Results comparison on in-the-wild images. We compare our method with PIFu [11] and DMC [16]. We visualize the results in

front-view and top-view.


