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1. Synthetic Dataset Augmentation

The generation of a large amount of scene data is a time-
consuming process. Consequently, we perform data aug-
mentation to enhance the number of synthetic scenes avail-
able in this study during training. To perform data augmen-
tation, we have developed a plugin for Blender, an open
source software package for creating digital content. The
plugin, coded in Python, automates the randomization of
both component postures and material parameters, which
include, but are not limited to, diffuse and specular albedo,
as well as surface roughness. Afterward, the plugin com-
putes rendered images efficiently using GPU-accelerated
path tracing provided by the Blender Cycles rendering en-
gine. In our pursuit of enhancing the realism of the ren-
dered images, we have also added real noise to the resulting
images, thereby mimicking the noise inherently present in
real-world photography.

When using Blender, for the spotlight source, we use
250 W-350 W power lamps to match closely with the real
illumination source. We employ the spotlight’s blend fea-
ture to create a radial decrease in intensity, similar to what
is seen in real life, where light spreads to adjacent surfaces.
We add one or two light sources to the scene, and each light
source is a point, spot, or area light. We position the light
sources and make them not too bright or can cast shadows
from moving objects. The camera is also moved randomly
at varying distances from the wall, between 1ft - 2ft, the
height of the camera was also changed. We do not, how-
ever, move the camera in-between a NLOS trajectory cap-
ture. When exporting the scenes from Blender to obj format
for the differentiable rendering, we triangulate the faces.

In Fig. ] we show examples of both synthetic and real
scenes used for training and testing. These scenes have a
variety of textures and obstacles. Furthermore, we included

objects in the line of sight to broaden the dataset. We also
take advantage of the data augmentation module discussed
earlier to enhance the diversity of synthetic scenes. We use
publicly available models of indoor spaces as well as mod-
els of some scenes created with Solidworks.
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Figure 1. Simulated dataset generation: We design the scenes us-
ing SolidWorks and use a data augmentation module that works
with Blender Cycles to randomize the postures and materials of
components in each scene.

Visit our jproject page| for more details. We have shared
the real dataset which contains highly accurate ground truth
localization values with a precision of 0.50 mm. This could
be of great benefit for future NLOS research.

2. Pipeline Details

The pipeline is written in PyTorch, and a forward pass of
the differentiable rendering takes approximately 0.05 sec-
onds for synthetic data. The differentiable renderer, which
transforms the mesh into a rendered image, loads the obj file


https://srchandr.github.io/SpotlightNLOS/
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Figure 2. Confusion matrix for posture classification for real data

as a tensor. Hence, we store the mesh files in tensor format
to expedite data loading.

For NLOS Networks, the last layer of ResNet-18 is re-
moved and the output from it is subsequently input to an
MLP comprised of 256 neurons. The fully connected (fc)
layers in the MLP are each followed by a ReLU. The input
to the first fc layer is 256 and is reduced to an output dimen-
sion of 128. The second fc layer takes this 128 size input
and outputs 2 values corresponding to the position (X,y).
For posture classification, the last linear layer has an output
of 6, and this is followed by a softmax activation.

3. Additional Analyses
3.1. Posture Classification — Real Data

We plot the confusion matrix of the posture classification
results for real data in Fig. Our network performs ex-
cellently in distinguishing the various postures, as demon-
strated by the confusion matrix. It did have a slight dif-
ficulty in distinguishing between the “Sit” and “Crouch”
labels, as well as the “Hand 90°” and “Hand 45°” labels.
This could be due to the network’s difficulty in accurately
recognizing the temporal signatures of hand movements.
Nonetheless, the difficulty of distinguishing similar actions
is a common problem in the field and is not exclusive to our
approach.

3.2. Dynamic Illumination Prediction

Our proposed approach estimates which part of an LOS
surface to shine a light on, resulting in an improvement in
the metric scores across the NLOS volume. We further in-
vestigated whether performance could be further improved

Table 1. Comparison of the performance of dynamic illumination
update with our proposed method

Task Ours Dynamic Illumination
Localization ({)

(Average Error [cm]) 8.10 742
Posture Classification (1) 9.13 06.46

(Accuracy [%])

if a rough estimate of the NLOS position is available to ad-
just the system. See Fig. [3| for the network modification
to our proposed pipeline. We use the same IEN architec-
ture and NLOS networks. To obtain a coarse localization
input of the NLOS object, we used a ResNet+MLP similar
to the NLOS Network. After removing the final fc layer of
the ResNet, we apply Global Average Pooling(GAP) to the
output feature maps. Then the MLP on top of the GAP is
used to perform the localization. This study was carried out
using only synthetic data.

We noticed that the illumination face predicted by the
IEN did not vary much when the NLOS estimated position
was available as an additional prior. The most significant
change in prediction was observed when the NLOS object
was moved far away from the wall. We can consider various
reasons for this observation, such as the LOS mesh being a
rough approximation of the scene geometry or the illumi-
nation spotlight spreading across adjacent faces. The im-
provement in performance was so small that we did not feel
the need to incorporate this dynamic illumination into the
real acquisition process.

In Fig. 5] we present further real-world results of our
method’s illumination prediction compared to [1f]. The first
column displays lidar scans of LOS walls, the second col-
umn illustrates pictures of the scene illuminated by our
method, and the third column shows the illumination deter-
mined by [1] using an optimization-based approach. The
last row of the figure shows that our method selects the
shiny cupboard as the illuminated patch, since it predicts
that more light will be sent into the NLOS scene, compared
to [1]], which chooses the region closest to the camera based
on its mathematical modeling approach.
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Figure 3. Pipeline for dynamic update of illumination. A simple coarse localization network is added at the beginning of our pipeline. This
takes an rgb capture of the LOS surface and predicts a localization value that is fed to our existing pipeline. There is also a feedback of the

final NLOS prediction back into the IEN.

(a) Synthetic

(b) Real

Figure 4. Sample scenes used for training and testing, note the variation in terms of textures, occlusions, etc. We consider walls with
varying levels of objects/clutter present in the LOS. We also consider planar walls with different textures.



(a) LOS Mesh

(b) Our Method (c) Chandran et. al.

Figure 5. Results of illumination estimation network, where (a) the first column shows polygonal meshes of LOS walls, (b) the second
column shows pictures of the scene spotlighted based on the suggestion from our learning-based technique, (c) the third column shows the
illumination determined by
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