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1. Ablation Studies

Apart from evaluating the importance of each loss com-
ponent in our proposed approach, we conducted evaluations
covering several key aspects. These experiments explored
the impacts of photofinishing, variations due to changes in
model intrinsics, and the results of degrading both image
and depth information. The following section provides a de-
tailed overview of the comprehensive ablation studies per-
formed for each of these factors.

1.1. Photofinishing

The image quality metrics applied to the proposed model
both with and without photofinishing, including metrics
such as PSNR, PSNR-L, SSIM, PCQI, UIQM, UCIQE, and
UIConM are presented in Table 1. In this context, I,,; de-
notes the result derived from PhISH-Net. Notably, the met-
rics show a consistent enhancement in image quality across
the majority of categories after the application of photofin-
ishing, evident in both datasets.

For a concrete illustration of this improvement, refer to
Figure 1, which showcases an instance of enhanced lighting
and a more natural appearance in the output. However, it’s
important to acknowledge that certain scenarios exhibit a
marginal decline in metrics following photofinishing. This
can be attributed to the color correction step inherent in
the photofinishing process, aimed at mitigating red artifacts
stemming from significant red light attenuation underwater.
It is worth noting that such correction may not universally
apply, and an overcompensating the red channel can induce
reddish artifacts post-photofinishing, as seen in Figure 2,
leading to a slight drop in the metrics.

In practical terms, since the post-processing step doesn’t
impose a substantial computational burden, it’s advisable to
generate both processed images. This approach allows for a
choice between selecting the visually more appealing image
or applying a blind or reference-based image quality metric
to guide the final decision-making process.

Metric UIEB EUVP
Iout Iout + PF Iout Iout + PF
PSNR (1) 21.103 21.139 21.313 20.919
PSNRy (1) 23.545 23.431 27.764 27.472
SSIM (1) 0.8362 0.8686 0.8500 0.8559
PCQI (1) 0.9009 0.9294 1.0177 1.0378
UIQM (1) 1.5123 1.5968 1.5322 1.5925
UCIQE (1) 0.6405 0.6405 0.5928 0.5918
UIConM (1) 1.0825 1.1513 1.1232 1.1512

Table 1. Image quality metrics using PhISH-Net for UIEB and
EUVP datasets before and after photofinishing (PF)

1.2. Model Intrinsics

Considering the typically high-resolution nature of un-
derwater images, PhISH-Net performs most network com-
putations at a reduced resolution (Dy,.). This approach en-
sures efficient real-time processing for input high-resolution
images (Dpy,). As elucidated in Section 3.3 of the main
paper, this methodology not only enhances computational
efficiency but also empowers the model to accommodate
images of varying dimensions. To delve deeper, our ex-
perimentation encompasses variations in both D;,. and Dy,
sizes, aiming to comprehend their influence on diverse im-
age quality metrics and runtime performance. The results,
obtained after training all models for 50 epochs without
applying photofinishing, are presented in Table 2. Given
the square nature of the images, the table includes only the
width dimension.

For our experiments pertaining to Dy, size, the Dy, size
remains constant at 512 pixels. Conversely, when inves-
tigating the impact of Dy, size, we maintain a fixed D,
size of 256 pixels. Our observations indicate that a majority
of the reference-based metrics, including PSNR, PSNR,,
SSIM and PCQI demonstrate an upward trend as the size in-
creases. In contrast, a notable portion of the non-reference-
based metrics showcase either a slight decline or an oscil-
latory pattern. Concurrently, the average runtime across
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Figure 1. Enhanced Image Clarity through photofinishing (PF) on a sample from the UIEB Dataset.
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Figure 2. Excessive color correction during photofinishing (PF) leads to diminished image quality in some cases. This is evident in
increased redness within illuminated regions, as highlighted in yellow on samples from the UIEB Dataset.

Metric Dy, size Dy, size
64 128 256 384 512 512 768 1024

PSNR (1) 19.2187 19.3523  20.0477 20.3986 20.6985 20.0477 20.9997 20.9443
PSNR[, (1) 21.9342 21.8004 22.7988 229073 233791 227988 23.6187 23.4659
SSIM (1) 0.81042 0.81168 0.82146 0.82409 0.82923 0.82146 0.83528 0.83609
UIQM (1) 152350 1.50390 1.50210 1.51080 1.49090 1.50210 1.49870 1.49470
UICM (M 9.61920 9.17650 9.68150 9.17860 9.32350 9.68150 9.02290  8.80380
UIConM (1) 1.08170 1.07820 1.07730 1.07440 1.07230 1.07730 1.07810 1.07660
CCF (1) 37.2623 36.5588 37.3866 37.3605 37.0942 37.3866 37.1043 36.7817
PCQI (1) 0.88290 0.86040 0.88340 0.88700 0.87650 0.88340 0.89020 0.88170
UCIQE (1) 0.64750 0.64009 0.64949 0.64421 0.64592 0.64949 0.64205 0.63945
Runtime (s) (}) 0.00779 0.00795 0.00817 0.00838 0.00843 0.00817 0.00824 0.00844

Table 2. Metric Variability Across D;, and Dy, Size Variations



Type Reference-based Non Reference-based
PSNR PSNRp SSIM UCIQE PCQI CCF UIQM UICM UIConM
) M ) ) M ™ ) ) ™

Original 21.2488 26.1750 0.9281 0.6785 1.0596 36.7361 15161 8.6105 1.0340
75% Darker Image 19.5019 24.7553 0.8796 0.6270 0.9668 38.8549 1.4699 9.3525  1.0549
Noisy Image (S&P) 15.2499 20.6743 0.6252 0.6232 0.3484 319978 1.4657 9.3169  0.9918
Noisy Image (Poisson) 18.2395 21.5353 04366 0.6469 0.5088 26.3174 1.7046 7.1597 1.2764
Noisy Image (Gaussian) 15.0410 18.8314 0.2128 0.6683 0.2970 31.4644 1.6153 11.485 1.0751
Weaker Depth Model 18.7892  22.0227 09173 0.6766 0.9955 29.1331 1.4037 9.1041  0.9652
Manually Altered Depth  18.0412  21.1915 09112 0.6724 0.9648 26.6382 1.3363 9.0291  0.9374

Table 3. Effects of Image and Depth Degradation on various Quality Metrics.

the dataset displays a proportional increase as size is aug-
mented.

In alignment with Section 4.1 of the main paper, we con-
ducted these experiments using an NVIDIA RTX A5000
GPU with a batch size of 64. However, it’s important to
note that for Dy, sizes exceeding 512 pixels, memory over-
flow errors necessitated a reduction in the batch size.

1.3. Image and Depth Degradation

In this section, we delve into an analysis of the model’s
performance by scrutinizing its metrics in response to image
and depth degradation. For image degradation, we manu-
ally generate degraded images through techniques such as
darkening the raw image (Fig. 4b) and introducing diverse
forms of noise (Figs. 4c to 4¢), while simultaneously obtain-
ing depth information through depth boosting [3]. Shifting
the focus to depth-based degradation, we employ the origi-
nal raw image but introduce a weaker depth model (Fig. 4f)
or manually manipulate the produced depth map after depth
boosting (Fig. 4g), aiming to study their respective impacts.

The outcomes are visually depicted in Figure 4, and a
comprehensive overview of the metrics is presented in Table
3. Our analysis can be bifurcated into discussions around
reference-based metrics and non-reference-based metrics.

For reference-based metrics, we observe optimal perfor-
mance when the original image and depth combination is
maintained. Intriguingly, the model showcases considerable
resilience to alterations in depth maps, performing com-
mendably even with modified depth information. However,
when confronted with image-based modifications, we note
exceptionally high scores in non-reference-based metrics,
surpassing those of the original image-depth pairing. Yet,
the SSIM and PCQI values raise concerns, as evident in Fig-
ure 4, where residual noise remains present, leading to im-
provements in parameters like contrast that boost the non-
reference metrics. This underlines the necessity of evalu-
ating performance from both reference and non-reference
metrics perspectives, as they offer nuanced insights into var-
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Figure 3. SIFT features for the input and the enhanced image.

ious facets of the model’s behavior. Notably, it’s worth not-
ing that instances affected by noise can be improved using
a simple filter-based pre-processing step, which can further
refine the model’s output quality.

1.4. SIFT-based Qualitative Analysis

In Section 4.2 of the main paper, we demonstrated our
framework’s efficacy on two datasets and assessed it gen-
eralization capability via a cross-dataset scenario. Here,
we compute SIFT features before and after enhancement
to understand the impact on downstream tasks. The input
image yielded 60 keypoints, whereas the enhanced image
detected 1239 keypoints (Fig 3). This increase in SIFT key-
points holds promise for improved feature extraction, en-
abling more robust and accurate analyses in various down-
stream tasks.

2. Depth Estimation

As outlined in Section 3.2 of the main paper, we adopt
a boosted version of monocular depth estimation proposed
by [3], building upon the foundation of MiDaS [2]. This
approach integrates two key techniques: double estima-
tion and patch selection. Through iterative refinement, the
double estimation process refines the initial depth estima-
tion, while patch selection selectively incorporates local de-
tails. By fusing depth estimates at multiple resolutions,
this method produces high-quality depth maps without re-
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Figure 4. Sample from the UIEB dataset depicting diverse image and depth degradation scenarios and it’s impact on visual quality.



(a) Sample Image from the UIEB Dataset

(b) Depth Estimate from the base MiDaS model
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Figure 5. Impact of depthmap quality via Depth Boosting.

Module Type Kernel Size Stride Channels Padding Activation
3 EN! c 3 2 8 1 relu
2 EN? c 3 2 16 1 relu
S’ EN3 ¢ 3 2 32 1 relu
EN* c 3 2 64 1 relu
" LF! c 3 1 64 1 relu
i‘é LF? c 3 1 64 1 none
<
£ GF 3 2 64 1 relu
£ GP c 3 2 64 1 relu
g GF? fe - - 256 - relu
= GF* fc - - 128 - relu
S GF? fc - - 64 - none
FS c 1 1 96 0 none
Cp fc - - 4 - relu
3 GN! c 1 1 16 0 relu
3 GN? c 1 1 1 0 sigmoid

Table 4. Model Architecture (convention as per Section 3)

training the base model.

By incorporating this boosted depth estimation tech-
nique, our study achieves improved detail and accuracy in
depth maps, contributing to more dependable and resilient
underwater image enhancement, as visualized in Figure 5.
We further observe from Figure 4 that the depth estimation
technique demonstrates effective performance even for dark
or low-lit images (Fig. 4b) and yields satisfactory results for
noisy images (Figs. 4c and 4d) without any pre-processing.

3. Model Architecture

In this section, we delve into the architectural specifics
of PhISH-Net, illustrated in Figure 2 in the main paper.
The overall flow unfolds as follows: the low-resolution Dy,
is fed into the Encoder (EN), and its output further flows
through the Local Feature (LF) and Global Feature (GF)
extractors. These outputs are then fused (FS) to derive the
bilateral grid coefficients. Simultaneously, the fused fea-

tures are directed to the Coefficient Predictor (CP), which
computes coefficients a, b, ¢, and d for the wideband atten-
uation prior, as outlined in Section 3.3 of the main paper.

The high-resolution Dy, is channeled into the Guide
Network (GN) to acquire a guidance map. This map then
interacts with the previously determined coefficients, facil-
itating efficient output upsampling [1] to obtain the high
resolution illumination map Sp,. Detailed specifications
of individual units, including layer type, kernel size, stride,
channels, padding, and activation function, are meticulously
documented in Table 4. In this context, ¢ signifies a convo-
lution layer, while fc denotes a fully connected layer.

As noted in Section 4 of the main paper, our training pro-
cedure involves maintaining fixed dimensions for D;, and
Dy, at 256x256 and 512x512, respectively. This design
choice (specifically D;, renders the entire network adapt-
able to images of varying sizes. During the testing phase,
we retain the original size of Dj, without any resizing.



This ensures that the output maintains the same dimensions
as the input, effectively catering to high-resolution inputs
while simultaneously reducing computational costs associ-
ated with low-resolution processing.
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