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1. Methods
It is well known from the shape from shading literature

(e.g. [5,15]) that the measured intensity through an imaging
device is a function of 3 major quantities – the shape and
reflectance of the object and the illumination of the environ-
ment. In this work, we focus on recovering surface normals
as a proxy for the object shape. We use controlled lighting
in addition to ambient illumination. Further, we simplify
the shape from shading problem by exclusively consider-
ing Lambertian objects. Future work will jointly estimate
object normals and reflectance functions. In this section,
we discuss how we design and measure the illumination of
the environment in Sec. 1.2 and our method of capturing
the shape of the object in the form of surface normals in
Sec. 1.3. Se start with a detailed description of our hard-
ware setup.

1.1. Details of the hardware platform
Our controlled illumination experimental setup

(Fig. 1a)1 consists of seven 25cm×10cm light panels
fabricated from commercially available LED strips [1]
fixed in the robot workspace as shown in Fig. 1a. Six light
panels are placed around the robot’s base to illuminate the
robot’s workspace with low angles of incidence. One panel
is placed over the workspace to provide baseline illumina-
tion to calculate shadows (more details in Sec. 1.3). Each
of the panels has a rated power of 45W, and is powered by
a 500W switching mode power supply. The light panels
are driven by a high-current switching transistor controlled
with an Arduino UnoTM. For this work, the illumination
of the room due to the ceiling lights, interreflections of all
the lights around the ceiling and walls etc. are assumed
to be constant. The Arduino relays the control commands
from our algorithm running on a workstation to the light

1figure numbers have been carried over from the main document

panels through a serial port. To capture images, we use two
FLIR machine vision cameras (C1 and C2 in Fig. 1a) [3].
The camera C1 is fitted with a 12mm focal length lens
and camera C2 is fitted with a 16mm focal length lens [2].
The cameras are configured to respond linearly to the
amount of light captured by the lenses (gamma = 1) and
output 1536 × 1536 pixels 16 bit monochrome images. To
position the cameras and perform manipulation tasks we
use an xArm7 manipulator [4] and our vacuum gripper is
manufactured from standard 1/4′′ vacuum fittings. Robot
demonstrations are recorded with two HD webcams placed
around the workspace. The data captured is processed on
a Linux workstation with an Intel Corei9 processor, 64GB
RAM, and an Nvidia RTX3090Ti graphics card with 25GB
of vRAM.

1.2. Modelling the illumination of the workspace
We choose to illuminate the robot workspace with low

angle of incidence lighting, with approximately parallel
light rays, emulating a light source at infinity. This ar-
rangement is also known as grazing illumination in the lit-
erature (see e.g. [19]). To achieve grazing illumination in
practice, we use rectangular shaped light panels larger than
our objects and mount the robot so the center of the robot’s
workspace is approximately equidistant from all our light
sources. In this section, we describe our approach for math-
ematically modelling the illumination in the robot’s coordi-
nate frame. To recover our illumination model, we capture
images from the two cameras (C1 and C2) with only one of
each light ((L1:6 in Fig. 1a) on. The calibration object is a
matte white hemishperical target with a 4cm radius.

Following [19], we choose to model the illumination
seen by a camera using a linear and a quadratic model. The
linear illumination model, following [6], is the Lambertian
reflectance equation

Iki =
ρ

π
⟨nk, li⟩ ∀i ∈ 1..., 6 (1)

where Iki is the intensity of the kth pixel, given the ith light
of L1,...,6 is switched on, nk is the normal vector at the
world point corresponding to the kth pixel in the manipula-
tor’s coordinate frame (see Fig. 1a for reference), li is the
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Figure 7. Our pipeline for performing photometric stereo at the scale of a robot’s workspace. Figure 7a displays the images captured by the camera C2

using each illumination source – L1 through L6 with the background automatically removed. The top image of Fig. 7b is the image captured using L7 and
the bottom image represents the normals obtained after solving Eq. (4). The normal slopes about world’s X,Y and Z axes (see Fig. 1a for reference) have
been mapped to red, green and blue channels respectively. Figure 7c presents the heightmaps of the object constructed by integrating the normals in Fig. 7b,
and, Fig. 7d from top to bottom presents our setup’s confidence about a pixel being a depth edge and the recovered edge map.

direction of the illumination of the ith light source and ρ is
the albedo of the surface of our target. By design, no three
illumination vectors of our approach are co planar – they are
better approximated by vectors on the surface of a frustum,
so for each pixel we follow [6], and use the Moore-Penrose
operator to invert Eq. (1) to get the illumination vectors
li, i ∈ (1, ..., 6) at the kth image pixel. As the albedo is
constant on the reflective surface, we include it inside the
recovered illumination vectors.

The linear shading model, however, does not capture the
effects of ambient illumination (room lights), the effects
of lights bouncing off of walls to re-illuminate the scene
(e.g. light from illumination channels L1, L2, L3 bounc-
ing off the wall (see Fig. 1a) and re-illuminating the scene),
and the errors due to our assumption that we have direc-
tional light sources at infinity. To approximately address
these artifacts we consider a quadratic shading model de-
rived from a truncated spherical harmonic shading model,
which has been shown to be a good approximation of Lam-
bertian reflectance under arbitrary illumination conditions.
Researchers have used this model for general purpose ren-
dering (see e.g. [7,23]), for small scale micro-geometry cap-
ture systems ( [19]) and for recovering shape and illumina-
tion from shading of images (e.g. [5]). We follow the for-
mulation in [23] and can write the quadratic shading model
as

Iki = ñT
kMiñk ∀i ∈ 1..., 6 (2)

where, ñk = [nk, 1]
T and Mi is a 4 × 4 symmetric matrix

with 9 independent quantities (spherical harmonic lighting
coefficients) per illumination source. For each light source,
we expand Eq. (2) and solve a system of linear equations to
obtain the lighting coefficients.

Finally, we observe that due to the limited power of the
lights and further errors in our assumptions on modelling
the lights and the sensitivity of the cameras, the illumination
coefficients vary at different parts of the workspace and to
take this into account, we take several images of our calibra-

tion target (20-25 placements of the target in a workspace of
460mm × 610mm) and use a bi-quadratic spline interpola-
tion to model the spatial variation of the linear and quadratic
illumination coefficients in the robot’s workspace. Higher
order illumination models were unnecessary given that our
objects were Lambertian.

1.3. Recovering surface normals from images

With the linear and quadratic illumination coefficients
recovered, and the object reflectances made uniform and
known due to the white paint, we expect to be able to ob-
tain the shape (world coordinate normals at image pixels in
a camera) of an object as seen by the cameras. Although,
this should be as simple as evaluating Eq. (1) at every pixel
to get a initial estimate of the shape and then refining it us-
ing Eq. (2), cast shadows and unequal influences of the light
sources at every pixel due to the relative location of the ob-
ject and the lights slightly complicate the shape recovery.
In this section we describe our approach for recovering the
normals at each of the imaged pixels by reasoning about
their illumination or shading. We note that it is known from
literature (see e.g. [26,29]) that recovering shadow contours
yields better performance in shape from shading problems
but we choose to reason locally at every pixel to recover
shape. With our choice of large image sizes, narrow field
of view lenses, and freedom of locating the camera in the
workspace, we can typically get a resolution upwards of
50 pixels/mm2 and can achieve reasonable shape estimates
through local reasoning.

To get an initial estimate of whether a pixel is illumi-
nated or shadowed, we compare the intensity of the pixel
for the images captured using L1:6 with the image captured
with L7 (see Fig. 1b). We generate an initial binary mask
for shadowed and illuminated pixels by observing that the
pixels illuminated due to a directional light source (L1:6)
would almost always be brighter than the pixels illuminated
with an overhead source (L7). With this, we get a binary
shadow-illumination vector wk ∈ {0, 1}6 for all the direc-



tional sources (L1:6) and augment it to get a binary diag-
onal shadow-illumination matrix Wk = diag(wk). Using
W and following [6] we can invert a weighted version of
Eq. (1) per-pixel to get the initial estimates of shape at each
pixel as:

n̂k = (WkL
k
lin)

†Wkik (3)

where Lk
lin ∈ R6×3 is the concatenated illumination matrix

at the world location of the kth pixel for each of the illu-
mination sources, obtained by concatenating li∀i ∈ 1, ..., 6,
and ik is the vector of all the intensities observed at the kth

pixel due to L1:6. (·)† is the Moore-Penrose inverse opera-
tor.

However, in practice, the effect of the shadows are not
binary and if a pixel is shadowed across more than 3 light
channels, which happens often for undercut surface fea-
tures, Eq. (3) is not solvable. We frequently encountered
this scenario for objects like the textured pyramid, the Bud-
dha, the bunny, and while imaging dough balls (high res-
olution images on paper website). In these cases, the esti-
mates from Eq. (3) were incorrect and we assigned shad-
owed pixels the normals of their nearest valid neighboring
pixel. This introduces high local errors in the normal esti-
mates and to address this, along with our motivation for re-
covering the quadratic shading model leads us to jointly re-
fine the normal estimates n̂k and shadow contributions wk

from Eq. (3). To do this, we use the previously estimated
n̂k in Eq. (2) to estimate the intensities Îki , i ∈ (1, ..., 6)
of each pixel conditioned on which light source (L1:6) was
switched on. We then weigh the intensities with their cor-
responding shadow weights wk and compare the predicted
intensities to the observed intensities Iki , i ∈ 1, ..., 6,∀k to
get a per pixel loss ℓk = ||Iki − Îi||2. Finally, we iteratively
solve a regularized photometric loss (Eq. (4)) across all pix-
els and channels while updating our hypotheses of per-pixel
shadow weights using Eq. (5) at every step.∑

k,i

(||Iki − wi
k Î

k
i ||2) + βLd(nk) i ∈ (1, ..., 6),∀k (4)

wt+1
k =

{
wt

k, if ℓt+1
k ≤ ℓtk

ϵmax{ϵ, ℓt+1
k } if ℓt+1

k > ℓtk

}
(5)

As we treat every pixel individually, we incorporate the in-
tuition that neighboring pixels (or world points) should have
similar normals (also known as an integrability constraint
in [15, 19] or smoothness priors in [5]) through a Laplacian
cost βLd(·) in Eq. (4). The influence of this regularizer can
be controlled through the width of the Laplacian filter d and
the weight β. We minimize Eq. (4) using gradient descent
using backtracking line search ( [30]) – variants of stochas-
tic gradient descent were too unstable for our use case. We
also note that nk is always calculated in the robot’s coor-
dinate frame, as was the case with the illumination model
and the calculated normals are independent of the camera’s

orientation in the manipulator’s coordinate frame. Our two
step refinement is somewhat similar to the one described
in [19], however, our per pixel inference model along with
the differentiability incorporated in the computational struc-
ture affords large accelerations with modern tensor libraries
and GPGPUs. We discuss further implementation details in
Sec. 6.

1.4. Recovering object edges and depth
Recovering edges: We observe that occlusion of a light

source at any point on an object surface depends on the
relative location of the light source with respect to the ob-
ject, so occlusion edges change when the light source lo-
cation is changed. Consider the image due to light source
L1 in Fig. 7a – one can intuitively conclude that the light
source is at the bottom left of the object and as we move
along the light’s path (from bottom left to top right), the
sudden change in brightness of the pixels denotes a sharp
change of object’s visibility along the direction. Indeed, the
illumination-shadow ridge is along the image of the ridge
where two sloped faces of the tetrahedron meet, and the re-
sulting surface patch falls out of the “view” of L1. Similar
reasoning applies to all the images captured using the il-
lumination channels L2:6 in Fig. 7a. This observation was
used by [24] to perform non-photorealistic stylized render-
ing of images and by [20] for detecting edges to localize
fabricated parts. In this work, we modified Raskar and
colleagues’( [24]) pipeline to accommodate illumination
sources not co-incident with the camera and use the relative
orientation between the camera and illumination sources to
calculate edges in an object due to depth changes. Figure 7d
(top to bottom) shows our confidence (following [24]) about
whether a pixel is at a depth edge and the edge map ob-
tained by hysteresis thresholding (see e.g. Canny [9]) the
confidence map. We provide more details in Sec. 2.

Recovering depth: With the surface normals from the
camera’s viewpoint recovered, we can spatially integrate the
normals to get a representation of the surface in 3D, as im-
aged by the camera. This is a classically studied problem in
vision known as “shape from shading” and there are several
solutions to this problem in the literature. We looked at four
classical solutions given along the first column of Tab. 1.
We benchmarked them in four aspects: computation speed
(speed), robustness to local errors in calculated normals due
to shadows, accuracy of surface reconstruction (or absence
of strong global smoothing priors) and admissibility of non-
axis-aligned arbitrary quadrilaterals image patches. Table 1
summarizes our qualitative findings and for the results in
this work, we used the perspective corrected Poisson inte-
gration ( [22]). Resulting integrated depth maps can be seen
in Figs. 1d and 7c, obtained by integrating the normals in
Figs. 1c and 7b respectively.

However, we should note that, unlike other true depth
sensing systems (see Tab. 1) which directly measure depth
at every pixel of the imaged scene using stereo or time-of-
flight sensing, the integrated heightmaps are implicit sur-



Method Speed Robust Accurate Shape
Variational calc. ( [12, 16]) ✓ × × ✓

Fourier ( [14]) ✓ ✓ × ×
Least sq. (IRLS) ( [10, 19]) × ✓ ✓ ✓

Poisson Int. ( [22]) ✓ ✓ ✓ ✓

Table 1. Qualitative comparison of the different normal integration meth-
ods evaluated. For the results presented in this work, we used the perspec-
tive corrected Poisson integration technique. The techniques which had
suitable behavior in our test criteria have been marked with a ✓ sign, and
unsuitable behavior has been marked with a × sign.

faces that locally have the same normals as the calculated
normal map. They will be metrically incorrect unless the
whole object is visible from the camera’s view port, and the
projection scale and the boundary conditions for the inte-
gration are not exactly known. We ensured this for the ob-
jects presented in Figs. 1d and 7c. An object like a cuboid
would not work. This limits our approach’s applicability as
a true depth sensor for manipulation tasks when only one
camera view is being used. Counter-intuitively, this is not
a limitation while obtaining depth maps from tactile sen-
sor images (see e.g. Chaudhury et al. [11] and Johnson et
al. [19]) where the aim is to only reconstruct the deformed
sensor surface - not the object beyond the deformed gel
membrane. However, apart from the small sensing foot-
print, elastomeric tactile sensors fail to capture sharp sur-
face details as they drape over the surface discontinuities.

2. Details of our steps for calculating occlusion
edges

For detecting occlusion edges we adapt the algorithm de-
scribed in [24] to suite our approach with lights far away
from the camera. We first collect the directionally illumi-
nated edges I1:6 corresponding to L1 through L6 and the
image I7 with the overhead light L7 (see Fig. 1a). We use
the intuition that, given the viewpoint remains fixed, a por-
tion of the scene illuminated with a directional source (I1:6
due to L1:6) would be highlighted in contrast to an image
due to the overhead light (I7 due to L7). Following [24] we
calculate the ratio images in Eq. (6), making adjustments to
avoid numerical errors.

R1:6 =
I1:6
I7

(6)

The ratio values in R1:6 will be higher for the areas
illuminated with the directional sources (L1:6) and lower
for areas in shadows, with a distinct transition (from low
to high values) along the occlusion edges. To further
highlight the individual contributions of the directional
illumination, we jointly reason about the transitions in R1:6

conditioned on the direction of the illuminating source
L1:6 with respect to the camera. For each light source L1:6

making an angle θ1:6 with the image axis (camera axes
X and Y correspond to the vertical and horizontal image

axes respectively), we extract the pixel values in R1:6 with
strong transitions along a direction of θ1:6. This gives us a
measure of our confidence that a pixel is on an occlusion
edge (see top image of Fig. 7d). Finally following [9], we
apply hysteresis thresholding to the confidence map and
obtain a binary map of occlusion edges (bottom image of
Fig. 7d).

3. Description of our algorithm for vacuum
grasping

Our pipeline for detecting a flat face along an axis can be
summarized with the following steps:

1. We first obtain the normals and the depth edges of the
objects in the robot’s workspace. The top insets of
Figs. 3a and 3b denote the normals of the scene and
the bottom insets denote the depth edges of the scene.

2. For a given picking direction, we randomly gener-
ate a set of feasible vacuum gripper orientations cen-
tered along the picking direction. For example, if the
picking direction is along the +Z axis (see Fig. 1a),
our samples resemble picking directions that are nor-
mally distributed around the vertical axis. For picking
along ±X or ±Y we adjust the sampling to only admit
candidate orientations that avoid collision between the
gripper and the table.

3. Next, we calculate the probability of each of the pixels
in the imaged workspace to be approachable by the set
of sampled vacuum gripper configurations. If the nor-
mal at a pixel is aligned with the picking direction, it is
assigned a high probability of success. This is identical
to the histogram back-projection step of the CAMShift
algorithm.

4. Following this, we identify the largest cluster of fea-
sible pixels using adaptive mean shift clustering. We
adapt the scale and the orientation of the kernel as pre-
scribed in [8]. This step identifies a candidate zone for
our grasp. The top rows of Figs. 3a and 3b demonstrate
the output of this step, projected onto the normals of
the scene calculated using the method described in
Sec. 1.3.

5. Finally, we score the suitability of executing a vacuum
grasp on the selected area by noting that any surface
patch with depth edges or surface textures would not
be suitable for a vacuum grasp. To do this, we project
the selected grasp areas on the scene’s edges calculated
using the method described in Sec. 1.4 and generate a
score based on the 0th and 1st pixel moments that indi-
cate the number of edge pixels and their spread inside
the chosen grasp area. Lower scores indicate that the
selected patch does not have depth edges. The bottom
rows of Figs. 3a and 3b identify the selected grasp in



areas without surface textures projected on the object
depth edges calculated by our method in Sec. 1.4.

We iteratively apply the above steps along all the direc-
tions reachable by our robot, namely ±X , ±Y , and Z for
both cameras C1 and C2 (see Fig. 1a for reference) and
score the detected patches. We identify the highest-scoring
patches as flat and “pickable”. Figures 3a and 3b denote
the corresponding “pickable” surfaces oriented along X
and Z directions of the workspace, imaged with the robot-
mounted camera C1. The grasp areas geometrically corre-
spond across two views imaged by C1 and C2 because the
scene normals are calculated with respect to the robot’s co-
ordinate frame.

4. Description of our algorithm for measuring
deformation

We assume that we have a uniformly dense high-quality
mesh M of the object consisting of triangles with aspect
ratio close to 1. We also assume that we have knowledge of
the pose of M in the robot’s coordinate frame and have ac-
cess to a differentiable renderer R (we use PyTorch3D [25])
that takes the mesh M, its pose and renders its silhouette
and its surface normals in the viewport of two cameras C1

and C2. We clamp the card at one end and push it against a
horizontal surface (X −Y plane in Fig. 4a) to induce buck-
ling, and with our vision system, we measure the change in
curvature on the object and capture its deformed geometry.
From Fig. 4a, we note that the normal nf measured by the
cameras at the face f of the object mesh M is dependent on
the vertex positions vif , i = 1, 2, 3. Given the initial states
of all the vertices in M we calculate changes in the ver-
tex positions such that the calculated normals at the face f
match closely to the imaged normals at the same geometric
location. We achieve that through the following steps:

1. We capture images of the scene using all the lights
and calculate the scene normals using the method de-
scribed in Sec. 1.3. We also capture the silhouettes of
the deforming object using our knowledge of the ob-
ject’s pose, geometry and the background. We denote
the calculated surface normals and silhouettes of the
scene as (NC1

S ,NC2

S ) and (MC1

S ,MC2

S ) respectively.
Equivalent quantities are also rendered by the differ-
entiable renderer R as (NC1

S ,NC2

R ) and (MC1

R ,MC2

R )
respectively.

2. If the states of all the vertices of M are exactly known,
the measured and rendered images should be equiva-
lent. We minimize the measured difference between
the rendered and measured quantities by updating the
vertex positions of M.

3. Next, we calculate the difference between the rendered
and measured quantities for the data corresponding to
C1 as:

ℓC1
(M) =

∑
k

[
1− ⟨NC1

S ,NC1

R ⟩
]
+ |MC1

S −MC1

R |2

(7)

for all the k pixels in the camera C1’s viewport. We
also obtain a similar difference ℓC2 for C2. We com-
pute a cumulative loss for both the views as

ℓ(M) = αℓC1(M) + (1− α)ℓC2(M) (8)

where α is the fraction of the number of pixels imaging
the deforming object in view C1 with the total number
of pixels imaging the object across both views C1 and
C2.

4. Minimizing Eq. (8) should, in theory, be enough for
finding the new locations of the vertices of M, but in
practice, local measurements and the nature of gradient
descent do not generate a smooth and physically plau-
sible mesh through the gradient updates. To address
this, we follow [21] and add two regularizers based on
physics – LLap.: the mesh Laplacian regularizer which
encourages geometrically smooth updates to the mesh
vertices, Ledge: the mesh edge length regularizer that
promotes mesh vertex updates that keep the aspect ra-
tios of the mesh elements close to 1, to augment our
loss in Eq. (8).

5. Finally, we formulate our objective function as:

min
vi

ℓ(M) + LLap.(M) + Ledge(M) ∀vi ∈ M (9)

We use gradient descent with backtracking line search
to minimize Eq. (9) above.

5. Description of our pose estimation pipelines
If a 3D model of an object is available, we define

the pose estimation problem as finding the rigid transform
Tobj

base which aligns the captured image of the object to a
rendered equivalent given the camera parameters Ki and
camera poses TCi

base for cameras C1 or C2. In addition to
the 3D model M of the object being available to us, we
also assume that we have access to a differentiable renderer
R that can render the 3D model M given Ki, TCi

base and
TCi

base. We use PyTorch3D [25] for our work. Using the
method described in Secs. 1.3 and 1.4 we process our im-
ages captured by a camera – say C1 of a view-port of w×h
pixels, to obtain the scene normal map NS ∈ Rw×h×3, the
scene depth edges ES ∈ Rw×h×1 and the object silhouette
from the scene MS ∈ Rw×h×1.

With R(M,Tobj
base,T

C1

base,K1) we also render equiva-
lent normal, depth edge and silhouette images NR, ER and
MR. Given that the object pose Tobj

base has been correctly
estimated, the rendered and the scene images for normals,



depth edges and object silhouettes should exactly match. In
the following steps, we describe our steps for aligning the
scene and rendered data. For our case, Tobj

base is parameter-
ized by the position of the object along the X and Y axes
and a rotation θ about Z axis.

1. To generate initial estimates of poses, we find cor-
respondences between the measured surface normals
NS and rendered surface normals NR for a given set
of θ ∈ [0◦, 180◦]. To do this, we identify object depth
corners in ES and look for patches in NR. The first
inset of Fig. 5a shows some corresponding depth edge
corners overlaid on NS and NR for a particular θ.
We find the matches by looking at 80 × 80 windows
around the depth corners in NS and match them to NR

for a particular θ using 3D cross-correlation. These
matches, along with K1 can be used to compute the
essential matrix between NS and NR. We then de-
compose the essential matrices for all θ and identify
the decomposition which produces a rigid transform
closest to identity rotation. The corresponding θi is
our initial guess for the object’s orientation.

2. Next, we align the silhouettes MS and MR|(x, y, θi)
using a pixel-wise squared L2 cost summed over all
the k pixels in the w × h simulated and real camera
view ports

min
x,y,θ

∑
k

∣∣Mk
S −Mk

R|(x,y,θ)
∣∣2
2

(10)

3. Following which, we align the rendered and measured
surface normals NR and NS respectively about 4 pyra-
mid levels. To do this we generate the normal im-
ages iNS ,

i NR, i ∈ (1, 2, 3, 4) across different scales
and calculate the cosine similarity between the k cor-
responding pixels inside the corresponding scaled sil-
houettes iMS :

min
x,y,θ

∑
k∈iMS

[
1− ⟨iNk

S ,
i Nk

R|(x,y,θ)⟩
]
∀i (11)

where i = 1 is the lowest pyramid level.

4. Finally, following Chaudhury et al. [11] we align the
rendered and measured depth edge images ES and ER

by minimizing the mean squared error between the Eu-
clidean distance transforms (EDT) of images ES and
ER. Using the definition of Euclidean distance trans-
form from [13], we formulate our dense edge align-
ment cost as

min
x,y,θ

∑
k

∣∣EDT(ES)− EDT(ER|(x,y,θ))
∣∣2
2

(12)

for all the k pixels in the w × h simulated and real
camera view ports.

If a 3D model of the object is unavailable, we define the
pose estimation problem as finding the rigid transform T
that aligns the two 3D representations captured by our sys-
tem as the object moves.

1. We first image the object with our camera – the left-
most inset of Fig. 5b shows the image of a folding knife
captured by C1 with L7 illuminating the scene.

2. Next, we calculate the normals of the scene and iden-
tify the object depth edges – these are shown as the
second and third insets of Fig. 5b. These normals are
only used to generate a 3D representation of the object.

3. Following that we calculate the point cloud of the sur-
face of the object and also calculate per point features
– we use Fast Point Feature Histograms (FPFH) [28].
The fourth inset of Fig. 5b shows the point cloud of
the object with the salient points colored. We note
that these points roughly indicate the depth disconti-
nuities by referring between the third and fourth insets
of Fig. 5b.

4. We repeat the steps above for the data obtained at the
new pose of the object.

5. Finally, we use the FPFH in a robust point feature
based pose estimation pipeline (we use FGR [32]) to
generate initial pose estimates and then use point-to-
plane ICP [27] to solve for the change in pose of the
object between the two measurements. The last two in-
sets of Fig. 5b shows the two initial measurements of
the object on top and the latter measurement registered
to the former measurement on the bottom. Point cloud
normals need to be re-calculated in the object’s frame
for the ICP based refinement step.

6. Implementation details and hyperparame-
ters

In this work, we attempt to capture and process all the
captured data online for the demonstrated perception tasks.
To do this, we implemented almost all of the pipelines
with strong GPU support. The algorithms for solving the
optimization problems associated with normal estimation
(Eq. (4)), bending estimation (Eq. (9)) and all the alignment
costs (Eqs. (10) to (12)) have been implemented with cus-
tom GPU back-ends, which led to massive speedup even
with a resolution of 50px/mm2. This lets us perform all the
tasks in less than 30 seconds time per task per object at full
resolution. A breakdown of the time take by each step is
shown in Tab. 2.

We also discuss our major design decisions and the ob-
served effects of important hyperparameters of the system
we discovered during implementing the system below.



Step Processing + [overhead]
Capture (Fig. 1b) 0.20 (per cam.) + [5]
Normal (eq. 1,2) 3.5 (10002 px)
Depth (Sec. 1.4) 0.15 (10002 px)
Edges (Sec. 1.4) 0.05 (10002 px)
Pickup (Fig. 3a) 0.5 (10002 px)
Pickup (robot) 20 (pick and drop)

Bending (Eq. (9)) 15 (1500 vert, 300 iter)) + [5]
pose est. (eq. 10, 11, 12) 12.5 - 15.5 (150 iter/eq.) + [5]

Table 2. Approximate time breakdown of various steps in seconds for
processing a 10002 px image

6.1. Practical considerations in design

We implemented the system demonstrated in the work
on a robot table of 1.5m × 1.5m, The black mat of
size (460mm × 610mm) in Fig. 1a denotes the dexterous
workspace of the robot. These dimensions governed the
placement of the light sources, their power, and some of
the camera hyper-parameters (exposure, f-stops) for our ex-
periments. To achieve good illumination of the workspace
(see Sec. 6.2, item 1), we observed that a 45W white light
source was sufficient when placed 500mm away from the
objects. So we placed six light sources in an approximately
hexagonal pattern around the center of the workspace with
a radius of approximately 500mm. Theoretically, as long as
there is a measurable effect of a directional light source on
the image of the object, our approach would work – how-
ever the more pronounced the effect, the less is the noise
in measuring it with a camera. With the constraints above,
and our choice of hyperparameters discussed in Sec. 6.2, we
could obtain a reasonable performance with our system.
As the lights L1 through L6 (Figs. 1a and 7) were used
as grazing directional light sources they were oriented to-
wards the center of the workspace. The exact orientation
of the light panels were not measured as those were im-
plicitly recovered by our illumination models discussed in
Sec. 1.2. However, through our fixtures, we ensured that
the light sources stationary during the experiment. Light
L7 was solely used to estimate the shadows and high-
lights when the scene was illuminated by L1 through L6,
and an illumination model was not recovered from it. We
experimented with using L7 as another source (by using
seven light sources instead of six in Eqs. (1) and (2)) and
the quality of the normal measurements degraded signifi-
cantly because of the poorer initial estimates of the shadow-
illumination matrix Wk in Eq. (3) and a resulting poorer
performance of Eqs. (4) and (5). Our two step illumination
model requires at least three light sources to illuminate ev-
ery portion of the scene for Eq. (3) to be valid. Except sim-
pler shapes (like a hemisphere or a pyramid) a minimum of
three light sources are not guaranteed to illuminate all the
portions on the surface, unless they are at a higher angle of
incidence to the surface. However, a higher angle of inci-
dence does not accentuate the depth discontinuities as much
as low angle of incidence illumination, which was a require-
ment for our case. These constraints led us to choose six

illumination sources on the table. We observed from initial
experiments that fewer sources performed poorer – espe-
cially for more complex shapes and, inspired by small-scale
photometric stereo sensors ( [11, 17, 18, 31]) we decided to
have six illumination sources.

6.2. Hyperparameters and their effects
The performance of our approach is dependent on some

crucial hyper-parameters. We note the important hyper-
parameters below:

• Gains, exposure times and lens f-stop numbers are crit-
ical hyperparameters for capturing the effects of di-
rectional illumination on the scene consistently. For
all our experiments, in addition to setting the sensor
gamma to 1, we set the sensor gains and black levels to
zero and turn off automatic exposure and gain settings.
We adjust the lens f-stops and exposure times so that
the brightest spot in the image under all illumination
conditions is between 75% to 85% of the maximum
brightness (uint16 max 65535). For our setup, an
f-stop of 1.6 on the 12mm focal length lens and 1.2
on the 16mm focal length lens and an exposure time
of 2.5 milliseconds worked well. These parameters
are also dependent on the color and power of the am-
bient illumination of the room, distance between the
light source and the scene, reflectivity of the ceiling
and walls, and the color of the wall.

• We used backtracking line search for all the gradient
descent steps (Eqs. (2) and (9) to (12)) in this work.
The initial learning rates were 0.1, with a c value of
10−5 and an annealing factor of 0.9. We terminated
the gradient descent when the step size was lower than
10−7 or 150 gradient descent steps have been com-
pleted.

• For the pickup tasks, we selected the edge pixel score
threshold by setting it to a low value as we only
grasped geometrically flat patches. The hyperparam-
eter value selected patches with less than 3–5% of the
pixels labeled as edges.

• For estimating bending deformation, we found that lo-
cating the cameras (C1 and C2 in Fig. 4a) such that
both yield similar sized images gave us the best results
while estimating the deformation of the card. For all
our experiments in Fig. 4c, we made sure that the value
of α in Eq. (8) was in between 0.45 to 0.55.

• Finally, for the global registration step in Fig. 5b, we
used a FPFH size of 35, and a voxel downsampling fac-
tor of 1.5 in the implementation available on Open3D
( [33]).
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