
Supplementary Material

A. Architecture and Hyperparameters

We train the baseline depth estimation model as de-
scribed in Section 4 with a ResNet-18 backbone. The net-
works are implemented in PyTorch and trained on a Tesla
V100 GPU with a batch size of 8 and a rehearsal batch size
of 8. To control for factors such as dataset size and image
size, we fix the training set size to 12,000 images and the
test set size to 600 images for each task. The images are
center-cropped to maintain the same aspect ratio as in the
KITTI dataset and resized to a common width and height
of 640 and 192 pixels, respectively. Thus, a total of 48000
samples are used for training with task identities assumed to
be known and 2400 samples for testing with task identities
assumed to be unknown. We establish a baseline where the
four tasks are trained sequentially for 20 epochs each with
an Adam optimizer and an initial learning rate of 1e−4 for
each task. The learning rate is decayed by a factor of 10 af-
ter 15 epochs for the respective task. Additionally, we train
the four tasks jointly for a total of 20 epochs and an initial
learning rate of 1e−4 which is decayed by a factor of 10 af-
ter 15 epochs. Finally, we apply a weight of β = 0.1 for
the spatiotemporal consistency loss with ρ = 0.85 (Equa-
tion 2), and update the context model at a frequency of 0.05
with α = 0.999. The results of MonoDepthCL are shown
for the working model.

B. Impact of task order on depth ranges

We pick our task order of VKITTI→ KITTI→
NYUv2→ Cityscapes from the 24 possible combinations
for reasons outlined in Section 3 including covering all do-
main shifts such as indoor-to-outdoor, outdoor-to-indoor,
and real-to-sim. However, NYUv2 has a short range depth
(10m), whereas the remaining tasks, i.e. datasets have
longer (80m-100m) range depths. This raises an interesting
question - if NYUv2, i.e. short range depth estimation is the
last task performed with no return to a longer depth range
task such as Cityscapes, does our method still remember to
perform a long range depth estimation?

To test this, we swap the order of appearance of NYUv2
and Cityscapes in our CUDE framework, and train Mon-
oDepthCL on this swapped sequence. Table S1 shows
that MonoDepthCL still outperforms NCT on all metrics
at different buffer sizes by a large margin on this sequence.
Therefore, MonoDepthCL still remembers to perform long
range depth estimation right after learning a short range
depth estimation task, compared to NCT which undergoes
catastrophic forgetting of long range depth estimation.

C. Unsupervised Depth Estimation

Here, we provide some of the details of the unsupervised
monocular depth estimation method (see Section 4).

Depth network: The depth network fD parameterized by
θD predicts inverse depths at four resolutions as follows:

D−11 , D−12 , D−13 , D−14 = fD(It; θD). (4)

Ego-motion network: The ego-motion network fE pa-
rameterized by θE predicts the relative rotation Rs←t and
translation Ts←t between each source-target image pair
concatenated along the channel dimension as follows:

Rj
s←t, T

j
s←t = fE(I

j
s , It; θE), (5)

Perspective projection: For each source image Ijs when
warping to the ith upsampled target image using the ith

depth prediction;

pjs ∼ KRj
s←tDi[pi,t]K

−1pi,t +KT j
s←t, (6)

where K is the camera intrinsics matrix, and pjs and pi,t
refer to the pixel locations in jth source and target images,
respectively. Then, we use bilinear interpolation to obtain
the value of the warped image Ijs at each location pi,t.

Photometric error: The appearance based per-pixel pho-
tometric error between the original target image and the
synthesized target images from ns source images for the
ith prediction (Equation 4) is defined as follows:

Pj
i =

ρ

2
(1− SSIM(It, Î

j
i,t)) + (1− ρ)∥It − Îji,t∥1,

Pi = min
j

Pj
i , j = 1, 2, ...ns.

(7)

This per-pixel minimum serves to deal with out-of-view
pixels and occlusion, such that only the source for which
the synthesis is most accurate contributes to the error term.
As discussed earlier in Section 4, the loss is masked to coun-
teract the impact of temporally stationary pixels.

Smoothness loss: The per-pixel edge-aware smoothness
loss for the ith prediction (Equation 4) is defined as follows:

Si =

∣∣∣∣∂x D−1i

Ept [D
−1
i]

∣∣∣∣ e−|∂xIt| +

∣∣∣∣∂y D−1i

Ept [D
−1
i]

∣∣∣∣ e−|∂yIt|,

(8)
where the expectation E of inverse depth predictions are
computed across all target pixels [55].

Method Buffer Size µfinal µoverall SPTO
abs rel↓ RMSE↓ a1↑ abs rel↓ RMSE↓ a1↑ abs rel↓ RMSE↓ a1↑

NCT – 0.512 12.930 0.318 0.364 11.008 0.525 0.328 9.542 0.350
50 0.303 8.595 0.543 0.255 8.618 0.637 0.255 8.266 0.604

MonoDepthCL 200 0.260 7.544 0.633 0.268 8.561 0.655 0.255 8.160 0.664
500 0.225 6.795 0.672 0.209 7.592 0.704 0.208 7.419 0.704

Table S1. Performance on the CUDE framework for multiple sizes of the memory buffer, when the only short depth range task is learned
last.

Real (Outdoor)
Germany, Switzerland, France
Daylight
Depth Range: 100 m

Real (Indoor)
Home, Cafe, Office, etc.
Natural and Artificial Light
Depth Range: 10 m

Simulated (Outdoor)
Synthetic Karlsruhe, Germany
Varying weather conditions
Depth Range: 80 m

Real (Outdoor)
Karlsruhe, Germany
Daylight
Depth Range: 80 m

Task 1: VKITTI2 Task 2: KITTI Task 3: NYUv2 Task 4: CITYSCAPES

Real (Outdoor)
USA, Japan
Daylight
Depth Range: 200 m

Task 5: DDAD

Figure S1. Extended Continual Unsupervised Depth Estimation (CUDE) framework for 5 tasks.

Total task loss : The total combined training loss across
all 4 predictions for unsupervised depth estimation is:

Ldepth =
1

4HW

4∑
i=1

∑
pt∈It

Pi[pt] +
λ

2i−1
Si[pt]. (9)

