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Supplementary Material

1. Appendix A: SMPL Body Shape and Pose
Estimation

In this section, we describe our detailed approach to es-
timate SMPL body shape and pose in Sec. 3. Given a
video with length L, the deep neural networks [8,9,18] pro-
vides an initial estimate of body pose (�̄) and shape {✓}L1 .
Then, we refine the predicted SMPL parameters jointly with
global translations {t}L1 and camera intrinsic parameters
K (i.e. focal length fx, fy in perspective camera) by a re-
construction loss. The camera intrinsics and extrinsics (i.e.
global translation) project the 3D body mesh to the image
plane. By minimizing the following cost function [15], we
fit the projected body mesh into the input image to recover
an accurate and temporal coherent SMPL body mesh.
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where !i is the keypoint confidence value predicted by
Openpose [3]; R✓ is the articulated transformation given
pose ✓; ⇢ is the Geman-McClure robust loss function [4];
M✓ is the UV-mapping from UV coordinate u(xi) to 3D co-
ordinate on predicted SMPL body mesh; Si is the rendered
silhouette map from predicted SMPL body mesh; P✓ is a
unit vector that indicates the orientation of skeleton part de-
fined by joint locations; gj , µ(✓,j),⌃✓,j are Gaussian Mix-
ture Model parameters for pose ✓ and ⌃� is PCA parame-
ters for body shape � learned from SMPL training set.

2. Appendix B: Searching Correspondences of
Boundary Points in 2D Silhouette Maps

In this section, we introduce a correspondence search-
ing algorithm to align our rendered silhouette map to tar-
get silhouette map from segmentation [5], which is used in
Sec. 5.1 and 5.2. Instead of using Closest Point to align
boundaries of two silhouette maps [17], our main moti-
vation is to cope with the corner cases where the bound-
ary of silhouette degenerates due to self-occlusion. Fig. 1b
demonstrates a scenario where the green boundary of target
silhouette map degenerates. Compared with ICP methods
that registers two sets silhouette boundary, we register the
boundary of our rendered silhouette map to cover the dis-
parity regions between two silhouette maps. Specifically,
we detect the edge of our rendered silhouette by a laplacian
filter [13] as source point set S and record the 2D coor-
dinate of all misaligned pixels as target point set T . For
i 2 S , Alg. 1 searches the corresponding point j 2 T over
all misaligned region. Fig. 1c and 1d shows the advantage
of our algorithm in finding correct 2D correspondence for
boundary points of rendered silhouette map. Since the hu-
man parsing approach [5] also provides semantic part la-
bels, we apply our correspondence search algorithm inde-
pendently for upper and lower cloth, which better generates
the boundary between two separate 3D clothes.



(a) Input Image and Rendered Mesh (b) Boundaries of Silhouette Maps (c) ICP Correspondence (d) Correspondence from Alg. 1

Algorithm 1 2D Correspondence Searching Algorithm for
Silhouette Map Alignment.

Input Source point set S , Target point set T
Output Correspondence Assignment Matrix M

1: D = 1,M = 0
2: for tj 2 T do
3: sk = ClosestPoint(S, tj)
4: Dk,j = ||sk � tj ||2
5: end for
6: for si 2 S do
7: Mi,argmax(Di) = 1
8: end for
9: return M

3. Appendix C: Network Architecture of gradi-
ent rectification network

This section introduces the network architecture we
used in Sec. 4,5. Overall, we exploit an encoder-decoder
structure for GRN. The encoder consists of two separate
branches for input geometry features X, nX and gradient
features @Ec

@X . We leverage a PointNet++ [12] structure to
encode the input gradient and a coordinate-based MLPs to
decode the multi-scale feature to output gradient. Given
X, @Ec

@X , the encoder is consist of two separate MLPs for
geometry feature and gradient feature. Geometry feature
simply contains 3D coordinate of X and normal nX. For
Sec. 5.1 and Sec. 5.2, the gradient feature are typically
sparse, since 2D energy term Ec is from silhouette map.
Therefore, we also consider the symmetric assumption of
garments motivated by [1]. To achieve this, each vertex
further takes the “input gradient” of its x-symmetric and
z-symmetric vertex as auxiliary feature. We set two lev-
els of downsampling for PointNet++. Since the input point
clouds are from canonical T-posed SMPL+D body with
fixed topology, the clusters for downsampling in Set Ab-
straction Module and the interpolation weights for upsam-
pling in Feature Propagation Module in PointNet++ are
pre-defined. Particularly, the vertices are devided into 104
patches according to UV-map and 24 components accord-
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Figure 2. General architecture of our proposed gradient rectifica-
tion network F .

ing to SMPL-joint location for two levels of downsampling.
The multiscale feature learned from PointNet++ is concate-
nated with the positional-encoding [10] of 3D vertex coor-
dinates to predict the output gradient. Following the fashion
from [10, 11], the 8-layer MLP decoder has a skip connec-
tion. In order to constraint the output range in each step, we
add a tanh activation function in the last layer. The archi-
tecture of our network is visualized in Fig. 2.

4. Appendix D: Limitations

The major limitations of our method are: (1) Due to
the underlying SMPL+D model, our method can not re-
construct certain types of clothing such as dresses or mul-
tilayered outfits. To extend to these cases, we need a more
expressive body model. (2) As it is a deformation-based
approach, in some challenging cases, we can not perfectly
align the silhouette as in the case of PIFu methods do (e.g.,
trousers leg in the last row of Fig.6). As a trade-off, our
method is more robust in generating clean and compact sur-
faces without outliers.
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Figure 3. Qualitative results on human performance capture from 3DP-W dataset.
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