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This supplementary document is organized as follows:

Sec. 1 provides more implementation details of different

methods.

Sec. 2 provides the definitions of different evaluation

metrics.

Sec. 3 provides the efficiency comparison of different

methods.

1. More Implementation Details.

All comparison methods and ours are implemented with

Pytorch on an NVIDIA GeForce RTX 3090 GPU. The train-

ing setups of different methods are consistent, including

event representation, optimizer, learning rate schedule, and

batch size.

PSMNet [1] & AANet [11] & RAFT-Stereo [4]. For these

three representative stereo matching networks, we use their

official implementation except for the identical yet indepen-

dent feature extractors, given the asymmetry of the input

frame and event images. We adopt the smooth L1 loss [1]

as recommended.

E2VID [5]+PSMNet/AANet/RAFT-Stereo. For this cate-

gory, we use the same implementation as aforementioned,

except that the network inputs are frame images and the in-

tensity images reconstructed from event streams by E2VID

[5]. The weights of E2VID we adopt are retrained by [7]

which present better reconstruction results. We do not fine-

tune E2VID on the DSEC dataset, since it requires aligned

event and intensity data which is not available.

DCNet [10] is a three-step depth estimation method from

SAFE systems: (i) estimate sparse disparity maps from the

binary edge images of event and frame images by minimiz-

ing a matching cost; (ii) estimate dense disparity maps di-

rectly from event and frame images with a stereo matching

network, similar to the methods in the first category; (iii)

fuse the sparse and dense disparity maps with a U-Net [6].

We use the implementation provided by the authors in the

first step. For the second step, we use PSMNet [1] as an

embodiment given its superior performance on DSEC over

other networks.

HDES [13] is an end-to-end depth estimation network

based on U-Net architecture. A pyramid attention module

is adopted to help focus on the important areas for different

modalities. Rather than the event queue [8], the same event

representation [12] as our method is adopted to achieve sig-

nificantly faster convergence speed and comparable perfor-

mance as recommended in [3].

Our Method. We adopt the feature extractor, match-

ing module, and regularization module recommended by

PDS [9], considering their distinct trade-off between perfor-

mance and efficiency. We decrease the downsample scale of

the regularization module from 16 to 8, because we empiri-

cally found that it decreases the computational consumption

and the number of network parameters without sacrificing

the performance of our method on the DSEC dataset. In

3D ConvLSTM cell, we replace the tanh activation with

ELU to achieve faster convergence and better performance

following [2].

2. Evaluation Metrics
The adopted disparity or depth metrics are calculated as
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where d̂i and di denote the predicted and ground-truth depth

(or disparity) value for a given pixel i with valid ground-

truth value, n is the number of valid pixels, and � is the

indicator function.
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3. Efficiency Comparison
In Tab. 1, we compare the computational consumption

(i.e., FLOPs) and the numbers of network parameters (i.e.,
Params) for different methods. FLOPs is computed with

stereo inputs of size 256×256 and maximum disparity value

96. The FLOPs of our method with temporal fusion is com-

puted for each time step.

Table 1. Efficiency of different comparison methods. ‘FLOPs’

is the number of floating point operations while ‘Params’ denotes

the number of network parameters. DCNet [10] computes sparse

disparity maps using an optimization method, which is not counted

in FLOPs.

Method FLOPs (G) Params (M)

RAFT-Stereo [4] 190.31 12.22

AANet [11] 41.44 11.19

PSMNet [1] 78.88 8.57

E2VID [5] + RAFT-Stereo [4] 249.84 22.93

E2VID [5] + AANet [11] 100.96 21.90

E2VID [5] + PSMNet [1] 138.41 19.28

DCNet [10] ∗ 141.86 21.22

HDES [13] 254.41 88.32

Ours 79.80 6.47
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