
Supplementary Material for Pixel Matching Network

1. Overview

We provide the implementation details, detailed analy-
ses, and additional experiments. In particular:

1. In Section 2, we give the Implementation Details of
our model.

2. In Section 3, we provide the details of the Conv1,
Conv2, and Classifier Head in decoder module.

3. We conduct experiments on FSS-1000 dataset [2] in
Section 4 and visualize some segmentation samples.

4. We provide the ablation analysis of both linear head
and low-level representations in Section 5.

2. Implementation Details

Our model consists of two parts, backbone and segmen-
tation head. Following the previous works, we conduct ex-
periments on two backbones, i.e., ResNet50 and ResNet101
[1], which are pre-trained on ImageNet and frozen during
the training stage. The segmentation head is trained with
the SGD optimizer in a 0.001 learning rate and 0.9 momen-
tum. We train 100 epochs for PASCAL and FSS datasets,
and 50 epochs for the COCO dataset. The batch size is set
to 24 for both datasets. The images from both datasets are
resized to 384 × 384. Our model is trained on the PyTorch
with two NVIDIA Tesla A100 GPUs.

3. The Detailed Modules

3.1. Conv1 and Conv2

Conv1 and Conv2 are two convolutional blocks in the
decoder module. As shown in Fig. 1, two multi-scale and
multi-receptive-field convolutional networks (in Fig. 1 (a),
(b) right) are introduced to replace the ordinary convolu-
tional networks (in Fig. 1 (a), (b) left). Each conv block
contains a 2d convolution layer, a GroupNorm layer, and a
ReLU layer. For Conv1, the feature map is enhanced with
a 1 × 1 conv block and a 3 × 3 conv block. And the out-
puts of two conv blocks are concatenated in the channel di-
mension for multi-receptive-field features fusion, which is

3*3 conv C, 16

3*3 conv 16, 32

3*3 conv 32, 64

3*3 conv 64, 64

3*3 conv 64, 64

3*3 conv 64, 64

3*3 conv C, 16

3*3 conv 16, 16

1*1 conv 32, 32

1*1 conv 16, 16

3*3 conv 32, 32

3*3 conv 32, 321*1 conv 32, 32

3*3 conv 16, 16

3*3 conv 64, 64

C

C

C

Split

1*1 conv 16, 16

C Concat

S S

S

(a) Conv1

3*3 conv C, 16

3*3 conv 16, 32

3*3 conv 32, 64

3*3 conv 64, 64

3*3 conv 64, 64

3*3 conv 64, 64

3*3 conv C, 16

3*3 conv 16, 16

1*1 conv 32, 32

1*1 conv 16, 16

3*3 conv 32, 32

3*3 conv 32, 321*1 conv 32, 32

3*3 conv 16, 16

3*3 conv 64, 64

C

C

C

Split

1*1 conv 16, 16

C Concat

S S

S

(b) Conv2

Figure 1. Illustration of the proposed Conv1 and Conv2 modules
in the decoder. The right convolutional networks are strengthened
from the left ones, which contain more convolutional layers and
fewer parameters.

formulated as:

Fout1 = C3×3(Fin),

Fout2 = Concat(C1×1(Fout1), C3×3(Fout1)),

Fout3 = Concat(C1×1(Fout2), C3×3(Fout2)),

(1)

where Concat denotes concatenating two feature maps in
the channel dimension, C1×1 and C3×3 denote a convlu-
tional layer with the 1× 1 and 3× 3 kernels, separately.

For Conv2, the feature map Fin is split into two parts
in the channel dimension, which are processed by a 1 × 1
conv block and a 3 × 3 conv block respectively, obtaining
Fout1 and Fcoarse1. And the feature map Fcoarse1 is split
and processed by the mentioned two conv blocks again, ob-

1



C
on

v 
B

lo
ck

C
on

v 
B

lo
ck

U
ps

am
pl

e

C
on

v 
B

lo
ck

U
ps

am
pl

e

C
on

v

C
on

v

R
eL

U

Conv Block

Figure 2. Illustration of the Classifier Head in the decoder.

taining Fout2 and Fout3. Then, all the output features are
concatenated in the channel dimension to match the size of
the input feature Fin. The process is formulated as:

Fout1, Fcoarse1 = Split(Fin),

Fout1, Fcoarse1 = C1×1(Fout1), C3×3(Fcoarse1),

Fout2, Fout3 = Split(Fcoarse1),

Fout2, Fout3 = C1×1(Fout2), C3×3(Fout3),

Fout = Concat(Fout1, Fout2, Fout3),

(2)

where Split denotes splitting the feature map in the chan-
nel dimension, Concat denotes concatenating feature maps
in the channel dimension, C1×1 and C3×3 denote a convlu-
tional layer with the 1× 1 and 3× 3 kernels, separately.

As shown in Fig. 1, the right convolutional network, with
fewer parameters, consists of more convolutional layers
than the left one. With Conv1 and Conv2, the multi-scale
and multi-receptive-field features are fused, which is im-
portant for the pixel-level segmentation task. Moreover, the
increased convolutional layers provide the learning space
for the affinity matrix to eliminate the noises brought by the
freeze backbone, which benefits segmenting the query sam-
ples.

3.2. Classifier Head

The classifier head is designed to enhance the query fore-
ground information in decoder module. As shown in Fig. 2,
Classifier Head contains a series of convolutional blocks
and two upsampling operations between two convolutional
blocks. Each convolutional block consists of two convolu-
tional layers connected with a ReLU operation.

4. Results on the FSS1000
As shown in Tab. 1, our method obtains the best perfor-

mance with Resnet101 backbone on the FSS-1000 dataset,
achieving 1.2% and 1.7% improvements under 1-shot and
5-shot settings, respectively. With Resnet50 backbone, our
method achieves 87.9% under the 1-shot setting, as the
second-best competitor, while the 5-shot result achieves
89.2%, surpassing the best competitor DCAMA by 0.4%.
As shown in Fig. 3, HSNet is underfitting in many samples
while our method performs better in all shown samples.

FSS1000

backbone methods
1-shot 5-shot

mIoU FB-IoU mIoU FB-IoU

ResNet50

HSNet [4] 85.5 - 86.5 -
DCAMA [5] 88.2 92.5 88.8 92.9
CMNet [3] 82.5 - 83.8 -
Our 87.9 92.3 89.2 93.3

ResNet101

DAN [6] 85.2 - 88.1 -
HSNet [4] 86.5 - 88.5 -
DCAMA [5] 88.3 92.4 89.1 93.1
Our 89.5 93.4 90.8 94.4

Table 1. FSS performances (%) on FSS-1000 with different back-
bones (ResNet50 and ResNet101). The best results are marked in
bold.

Benchmarks SOTA Our Our + Linear Head

Cross-Category

PASCAL5i 66.8 65.4 66.2(+0.6)
COCO5i 43.3 40.4 44.2(+3.8)
FSS1000 88.2 87.9 88.7(+0.8)

Cross-Dataset
COCO5i-PASCAL5i 65.6 66.6 71.4(+4.8)
COCO5i-FSS1000 81.9 84.3 82.6(-1.7)
PASCAL-FSS1000 78.6 84.6 84.1(-0.5)

Cross-Domain

PASCAL-Deepglobe 37.9 37.1 36.5(-0.6)
PASCAL-ISIC2018 41.2 51.2 45.5(-5.7)
PASCAL-Chest Xray 66.6 70.4 58.3(-12.1)
PASCAL5i-SUIM 34.7 34.8 34.7(-0.1)
Parameters(M) 2.6 0.68 11.2

Table 2. Impacts (%) of ‘Linear Head’ under 1-shot setting with
Resnet50 backbone in 10 benchmarks.

Sources Fold-0 Fold-1 Fold-2 Fold-3 Mean

None 66.1 68.1 60.6 54.9 62.4
Query and Support 67.3 70.5 62.3 57.5 64.4
Support 64.2 67.4 60.2 55.1 61.7
Query 67.3 72.0 62.4 59.9 65.4

Table 3. Impact (%) of low-level feature representations from dif-
ferent sources under 1-Shot setting with Resnet50 backbone on the
PASCAL dataset. ‘None’ denotes that no low-level feature repre-
sentations are fused into the decoder.

5. Ablation Study

Linear Head. Typically, a linear head is added after
each block of the backbone to fit the segmentation task.
In this experiment, we conduct experiments to evaluate its
impacts on the FSS performances. The experimental re-



(a)

(b)

(c)

(d)

Figure 3. Some 1-Shot visualization on the FSS-1000 dataset with ResNet50 backbone. (a) Support image, (b) HSNet [4], (c) PMNet
(Ours), (d) Ground-Truth.

sults in Tab. 2 show that adding the Linear Head would im-
prove the FSS performance in most cross-class and cross-
dataset tasks. Especially in COCO5i, Linear Head takes
3.8% improvement. However, the model without Linear
Head achieves better performance in all cross-domain tasks.
We speculate that the linear head facilitates the training
of both the cross-category and cross-dataset tasks but may
cause the overfitting issue for the cross-domain tasks. To
this end, we conclude that adding the linear head on each
block of the backbone will boost the FSS performances un-
der both cross-category and cross-dataset scenarios but hurt
the performance under the cross-domain scenario. Note that
adding the linear head would introduce a large number of
parameters.

Impacts of low-level representations from different
sources. The low-level feature representations are fused
into the decoder for query segmentation. In this experi-
ment, we conduct experiments to evaluate the impacts of
low-level feature representations from different sources on
the final performance. As shown in Tab. 3, we observe that
fusing the low-level feature presentations from the support
image would hurt the performance while the low-level pre-
sentations from the query image are beneficial for the seg-
mentation results of the query image.

References
[1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In CVPR, pages
770–778, 2016. 1

[2] Xiang Li, Tianhan Wei, Yau Pun Chen, Yu-Wing Tai, and Chi-
Keung Tang. Fss-1000: A 1000-class dataset for few-shot

segmentation. In CVPR, pages 2869–2878, 2020. 1
[3] Weide Liu, Chi Zhang, Henghui Ding, Tzu-Yi Hung, and Gu-

osheng Lin. Few-shot segmentation with optimal transport
matching and message flow. TMM, 2022. 2

[4] Juhong Min, Dahyun Kang, and Minsu Cho. Hypercorrelation
squeeze for few-shot segmentation. In ICCV, pages 6941–
6952, 2021. 2, 3

[5] Xinyu Shi, Dong Wei, Yu Zhang, Donghuan Lu, Munan Ning,
Jiashun Chen, Kai Ma, and Yefeng Zheng. Dense cross-query-
and-support attention weighted mask aggregation for few-shot
segmentation. In ECCV, pages 151–168, 2022. 2

[6] Haochen Wang, Xudong Zhang, Yutao Hu, Yandan Yang, Xi-
anbin Cao, and Xiantong Zhen. Few-shot semantic segmen-
tation with democratic attention networks. In ECCV, pages
730–746, 2020. 2


	. Overview
	. Implementation Details
	. The Detailed Modules
	. Conv1 and Conv2
	. Classifier Head

	. Results on the FSS1000
	. Ablation Study

