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This supplementary material contains the following

parts:

• Implementation Details. We provide more details of

the experimental settings, including the network archi-

tecture and noise scheduler.

• Evaluation Dataset and Metrics. We provide the de-

tails of dataset and evaluation metrics used in the ex-

periments part.

• Ablation Study. A detailed quantitative evaluation is

presented to understand the impact of various compo-

nents and hyper-parameter selections. We investigate

the influence of guided steps, layer-specific losses, and

the loss scale factor for backward guidance.

• Analysis on Initial Noise. We demonstrate that dif-

ferent prompts with the same initial noise generate im-

ages with similar layouts. Therefore, a good choice

of initial noise is essential for the success of guidance.

Additionally, we quantitatively prove that using the de-

fined loss on cross-attention allows for optimal initial

noise selection, enhancing guidance performance.

• Analysis on Different Tokens. We visualize the cross-

attention map of different prompts and provide extra

experiments about controlling the layout of the gener-

ated image with only padding tokens.

• More Examples. We provide additional examples of

our method, including examples under VISOR [3] pro-

tocol and real image editing examples.

• Ethics. We provide discussion on ethical considera-

tions related to data usage.

1. Implementation Details

We provide additional details of our experimental set-

tings.

Network Architecture. In all experiments, we use the

Stable Diffusion (SD) V-1.5 [9] as our base model with-

out any architecture modification. The diffusion model

is trained in the latent space of an autoencoder. Specifi-

cally, the diffusion model adopts the U-Net [10] architec-

ture with a relative downsampling factor of 8. The down-

sampling branch of the U-Net has three sequential cross-

attention blocks. The mid part of the U-Net has only one

cross-attention block. The up-sampling branch of the U-Net

has three sequential cross-attention blocks. In each cross-

attention block, there are repeated layers following the or-

der: ResBlock → Self-Attention → Cross-Attention. The

cross-attention blocks in the down-sampling branch, mid

part, and up-sampling have 2, 1, and 3 such repeated pat-

terns, respectively.

Noise Scheduler. The LMSDscheudler is utilized in all of

our experiments with 51 time steps and beta values starting

at 0.00085 and ending at 0.012, following a linear scheduler.

We also adopt class-free guidance, as suggested in [4], with

a guidance scale of 7.5, consistent with prior work [9].

2. Evaluation Datasets and Metrics
VISOR [3]. We follow the evaluation process described

in [3] to compute the VISOR metric, which is designed to

quantify the spatial understanding abilities of text-to-image

models. This metric focuses on two-dimensional relation-

ships, such as left, right, above, and below, between two

objects. We measure object accuracy (OA), which is the

probability that the generated image contains both objects

specified in the text prompt. VISORuncond is the proba-

bility that generating both objects with correct spatial re-

lationship, and VISORcond is the conditional probability of

correct spatial relationships being generated, given that both

objects were generated correctly. To generate text prompts

for evaluation, we use the 80 object categories from the MS

COCO dataset [6], resulting in a total of 80 × 79 × 4 =
25,280 prompts considering any combination of two object

categories for each spatial relationship. For each prompt,

we generate a single image. As layout guidance inputs we
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split the image canvas into two, vertically or horizontally, to

create two adjacent bounding boxes depending on the type

of spatial relationship defined by the text prompt. This only

imposes a weak constraint on the layout and can be done

automatically (no user intervention is required). For a fair

comparison to previous methods that are evaluated in [3],

we use the same detection model (OWL-ViT [7]) as in [3]

when computing the VISOR metric.

COCO 2014 [6] We randomly sampled 1000 images with

their annotations for evaluation from the COCO 2014 val-

idation dataset. The bounding boxes in COCO 2014 are

not always grounded in the corresponding caption. There-

fore, we append the object labels to the caption as the text

prompt for image generation following a similar setting in

[1, 2]. Besides, we only pick one to three bounding boxes

with areas covering at least 5% of the image panel per sam-

ple following the setting in [2]. To assess the quality of the

generated images we compute the FID score between the

sampled 1000 images from COCO and generated images.

We use an open-vocabulary object detector (Detic [12]) to

obtain the respective grounding on generated images, which

allows quantifying layout fidelity using common detection

metrics such as average precision (AP). The vocabulary of

the detector is constrained to all the COCO object labels.

Flickr30K Entities [8] Finally, we evaluate our method

on the Flickr30k Entities dataset [8, 11], which contains

image-caption pairs. Since the dataset provides visual

groundings of the textual descriptions, we sample a sin-

gle caption per image and its corresponding bounding boxes

and use this as input to perform layout-controlled guidance

with SD. We generate a total of 1,000 images using sam-

ples from the validation set. Similarly to the metric used in

COCO 2014, we compute the FID score between the orig-

inal images and the generated ones and use AP as a metric

of layout control. To enhance the reliability of the detector,

we convert each phrase in the Flickr30 dataset into a sin-

gle noun (e.g., ball) and filter out unrelated nouns, resulting

in a total of 303 categories. For each image, the target vo-

cabulary for Detic is defined by the grounded entities in the

corresponding caption. To avoid contaminating the evalua-

tion process with perceived human attributes (such as gen-

der, age, occupation, etc.), we also convert all instances of

people (man, woman, child, boy, girl, policeman, student,

etc.) to the super-class “person” in the target vocabulary

for Detic. Since then the person category is predominant,

we calculate average precision separately for this category

(APp) but also report the mean average precision across all

categories (mAP).

3. Ablation Study

In this section, we supplement the ablation studies in the

main paper with quantitative evaluations, studying the im-

Guidance Step FID (↓) APp (↑) mAP (↑) Inference Time

0 76 19.4 8.7 ∼ 4sec/image

2 81.2 29.7 13.7 ∼ 4sec/image

5 81.4 30.3 15.6 ∼ 6 sec/image

10 82.0 33.5 16.7 ∼ 8 sec/image

15 82.3 35.5 14.7 ∼ 10 sec/image

20 83.2 35.6 15.3 ∼ 12 sec/image

30 83.5 35.7 15.3 ∼ 15 sec/image

Table A1. Ablation study on guidance steps.

pact of the guided steps, loss scale factor, and the effect

of backward guidance on different layers of the denoising

network. We followed the same setting as described above

and in Section 4.1 (main paper) using 1000 captions and

their corresponding bounding boxes from the Flickr30K En-

tities [8] dataset to generate images with a pre-specified lay-

out.

Impact of Guidance Step. Firstly, we explore the effects

of guided steps we perform in the diffusion process. The

results are shown in Tab. A1, we evaluate image quality

(FID), APp, layout control (mAP) while varying the num-

ber of guided steps. We found no improvement in mAP

after 10 steps, and FID gradually deteriorates. We hypoth-

esize that this decline may result from potentially shifting

the latent vector away from the distribution that corresponds

to the original text embedding. Besides, we could see that

when increasing the guided steps in the diffusion process,

the computation time increases. This is a trade-off ques-

tion. Generally, a range of 2-10 guidance steps suffices, but

users can fine-tune this based on their specific requirements.

Impact of Layers. Secondly, we study the behavior of

different layers, by applying backward guidance on the

cross-attention maps across different layers of the network.

The results are shown in Table A2. As stated in Section 4.4

and illustrated in the table, layers of the down-sampling

branch are the least likely to conform to layout control (with

Down-1 < Down-2 < Down-3 in terms of mAP). In general,

high-resolution blocks (such as Down-1 or Up-3) should not

be used to control the layout. To achieve the best trade-off

between image quality and layout control, a combination

of the mid-block (Mid-1) and the first cross-attention block

in up-sampling branch (Up-1) of the U-Net is the optimal

choice overall.

Impact of Loss Scale Factor. We follow the same setup

to evaluate the scale factor η used as the strength of the loss

for backward guidance. In Table A3 we report the FID,

APp and mAP for different loss scale factors. When the loss

scale is set to 5–50, the FID is low compared to a larger loss

scale factor, indicating that the quality with a loss scale fac-

tor of 5–50 is generally good. To achieve better control over

the layout, the loss scale factors of 20–50 have the lowest

APp and mAP. According to the experiments, a loss scale
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� � � 81.3 31.1 13.2

� 83.5 23.1 10.0

� 82.0 24.0 10.9

� 82.2 34.5 14.2

� 82.1 30.0 15.2

� � 82.0 33.5 16.7
� � 86.3 30.9 14.0

� � 84.1 23.5 10.5

� � � 84.5 35.6 16.5

� 81.2 36.0 15.1

� 87.5 35.0 14.3

� 85.0 25.6 9.8

Table A2. Ablation study of loss constraints on different layers.

Loss Scale FID (↓) APp (↑) mAP (↑)

5 82.5 28.3 12.4

10 82.0 30.0 14.5

20 81.1 34.7 15.4

30 82.0 33.5 16.7
50 83.8 35.8 15.6

100 88.4 34.9 14.3

200 99.2 32.2 13.8

500 129.7 26.2 9.2

Table A3. Ablation study of the loss scale factor.

factor of 20–50 works generally well. This factor can be

adjusted by the user to get more realistic images or achieve

better control over the layout.

4. Analysis on Initial Noise
We conduct an in-depth analysis of the effects of initial

noise. As illustrated in Figure A1, the initial noise reveals

significant spatial information about the layout. Notably,

altering sentence words does not affect this final layout sig-

nificantly. Figure A2 offers a visual comparison of scenar-

ios with and without noise selection. The results indicate

that our backward guidance achieves better control when

noise selection is employed. Furthermore, Table A4 quan-

titatively assesses the impact of noise selection on COCO

2014 and Flickr30K datasets. Methods incorporating noise

selection consistently outperform others, underscoring the

efficacy of our loss as a noise selection metric.

5. Analysis on Different Tokens
Next, we study the type of information carried by dif-

ferent tokens and their corresponding cross-attention maps,

which is relevant for layout guidance.

Removing Word Tokens. We first show that the padding
tokens convey a significant amount of semantic informa-

tion. In Figure A3, we randomly pick a subset of captions

from MSCOCO [6] and generate images using the Stable

Figure A1. Each row has the same initial noise. We could see that

even if we changed the object word in one sentence, the overall

layout remains similar.

Diffusion model and the full caption as the input prompt.

As a comparison, after the captions pass through the text

encoder, we replace the token embeddings of each caption

with the embeddings of its corresponding padding tokens,

thus creating a prompt that consists only of padding to-

kens. Then, we use this prompt to generate images. Sur-

prisingly, despite only generating from padding (i.e., non-

word) token embeddings, we observe that the generated

images (Word Drop in Figure A3) closely follow both the

semantics and the layout of the image generated from the



Figure A2. We qualitatively compare the generated results with

and without noise selection (NS). The results show that with noise

selection, our backward guidance achieves better layout control.

full-text prompt. Thus, the figure clearly demonstrates that

the padding tokens contain the information of the whole

sentence. This further justifies why in forward guidance

padding tokens cannot be ignored, i.e., it would be insuffi-

cient to attempt to control selected word tokens only (main

paper, Figure 5). In backward guidance, however, control-

ling the cross-attention maps of padding tokens is not nec-

essary; this is now done by back-propagating and updating

the latent, which subsequently changes the cross-attention

maps of all tokens, even those that are not explicitly con-

trolled.

Cross-Attention Maps of Special Tokens. During our

experiments, we found that the cross-attention of the

padding tokens has a strong connection to the foreground

of the generated images. We illustrated this in Figure 4

(main paper), which shows that the cross-attention maps of

padding tokens resemble saliency maps, while the cross-

attention maps of the start tokens are mostly complemen-

tary to those of padding tokens (i.e., they capture what can

be considered as background). In Figure A4, we show

more examples of the cross-attention maps of the start and

padding tokens. The captions are randomly taken from

MSCOCO [5]. This figure further highlights the observa-

tion that cross-attention maps of these special tokens con-

Base Model NS
COCO 2014 Flickr30K

FID (↓) mAP (↑) FID (↓) mAP (↑) APP (↑)

Stable Diffusion � 74.4 33.6 82.0 33.5 16.7

Stable Diffusion � 73.3 35.7 78.9 35.6 17.9

Table A4. Ablation Study on Noise Selection (NS).

tain important semantic and spatial information. For exam-

ple, in the first row, given “A short train traveling through

a mountainous landscape” as the input prompt, the cross-

attention map of the padding tokens aligns with the gener-

ated train and the start token focuses on the background of

the generated image.

Layout Control with Only Padding Tokens. Motivated

by the examples above, we perform backward guidance

only on the cross-attention maps of padding tokens to con-

trol the spatial layout of all foreground objects simulta-

neously (as a group). Some examples are shown in Fig-

ure A5. This figure verifies our assumption that by guid-

ing the cross-attention map of the padding tokens alone

one can control the composition of the images at the fore-

ground/background level.

6. More Examples.
More Examples under VISOR Protocol. We show more

examples under the VISOR protocol in Figure A6 and Fig-

ure A7. Our method generates the correct spatial relation-

ships as shown in the figures. There are also some fail-

ure cases, such as the last row in Figure A6. Our method

fails to generate both a fork and a carrot. This is an inher-

ited problem from the Stable Diffusion model. However, in

most cases, layout guidance helps generate all entities in the

text prompt, even when the unguided Stable Diffusion fails

(e.g., as is often the case with atypical scene compositions),

as well as conforming to a specific spatial arrangement.

More Image Editing Examples. We show more exam-

ples of real image editing in Figure A8. Specifically, we

train for 500 steps to learn the embedding of 〈∗〉 with text

inversion and then 150 steps fine-tuning of the text encoder

and denoiser network with Dreambooth. After finalizing

the model, we perform inference with our backward guid-

ance using different text prompts and user-specified bound-

ing boxes. As shown in the figure, we manage to change the

context, layout, and style of the given real image.

7. Ethics
We use the Flick30K Entities and MS-COCO datasets

in a manner compatible with their terms. Some of these

images may accidentally contain faces or other personal in-

formation, but we do not make use of these images or image

regions. For further details on ethics, data protection, and



copyright please see https://www.robots.ox.ac.
uk/˜vedaldi/research/union/ethics.html.
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Figure A3. Generating images without “seeing” the full-text prompt. We replace the token embeddings for all words in each caption with

their padding token embeddings (word drop). We observe that the generated images after word dropping exhibit similar semantics and

layout to the images generated from the full-text prompt, suggesting that significant information about the image is contained in padding

tokens.



Figure A4. Visualization of cross-attention maps of start token ([SoT]) and padding tokens ([EoT]) at the final step of inference. Cross-

attention maps are taken from the first cross-attention block of the up-sampling branch of U-Net and averaged over all attention heads.



Figure A5. Backward guidance only on the padding tokens. We observe that the cross-attention of padding tokens typically represents the

foreground of the generated image. Therefore, by spatially guiding the cross-attention maps that correspond to padding tokens, we can

control the position of the foreground, which may include multiple objects (e.g., “pikachu” and “basketball”).



Figure A6. Qualitative comparison between different generative models. For each prompt, we generate four images. Some images of other

models are from the demo website of [3].



Figure A7. Qualitative comparison between different generative models. For each prompt, we generate four images. Some images of other

models are from the demo website of [3].



Figure A8. More examples of real image editing. 〈∗〉 is the learned token that encodes the object in the real image.


