
RMFER: Semi-supervised Contrastive Learning for
Facial Expression Recognition with Reaction Mashup Video

Yunseong Cho1,2 Chanwoo Kim1 Hoseong Cho1 Yunhoe Ku1 Eunseo Kim1

Muhammadjon Boboev1 Joonseok Lee3,4 Seungryul Baek1

1UNIST 2SNOW Corp. 3Seoul National University

Contribution of the main paper. In this paper, we pro-

posed the semi-supervised framework for the facial expres-

sion recognition(FER) task that exploits both original FER

benchmarks and unlabeled datasets (i.e., proposed RMset).

Semi-supervised learning is proposed to tackle the data

issue in the facial expression recognition problem. It is

hard to collect quality FER datasets due to the mislabeling

caused by the annotator’s subjectivity and the subtlety and

complexity of facial expressions. To bypass the difficulty

of the data collection, we tried to verify that the raw video

data having rich facial expressions while not having super-

vised labels annotated by humans could help improve the

FER accuracy. What we have done could be summarized as

follows:

(1) We trained our framework, RMFER, exploiting the

conventional cross-entropy loss using the original FER

benchmarks.

(2) Upon this, we collected unlabeled video data called

reaction mashup (RM) video, processed it, and eventually

made the reaction mashup dataset (i.e., RMset), which has

strong potential for improving the FER accuracy. The RM

video contains multiple persons inside who are watching

the same film (we call this a trigger film). In these videos,

the persons in the same frame might share the same feeling

as they are watching the same scene of the film. Also, the

same person’s snapshots in far different frames might ex-

hibit dissimilar expressions. As the video sequence, RMset

includes rich and continuous information about the natu-

ral facial expressions. Using the mentioned prior, we could

effectively incorporate RMset with contrastive learning by

defining positive and negative sets based on the similarity

and dissimilarity assumptions.

(3) The prior inherent in the RMset is not always true:

persons in the same frame could have different expressions,

and the same person’s snapshots in far different frames

could have similar expressions. This can cause a negative

impact on contrastive learning and could eventually spoil

the FER accuracy. To relieve the issue, we proposed to

learn the pairwise similarity between samples using inter-

sample attention learning (IAL), and we improved the pos-

itive/negative sets (initially made based on RM prior) for

contrastive learning, using the pairwise attention between

samples in attention-based contrastive learning (ACL).

Via the proposed RMset and RMFER framework, we

demonstrated that state-of-the-art accuracy can be obtained

on several challenging FER benchmarks.

Content of the supplemental. In this supplemental, we

offer implementation details, insights into the RMset, more

qualitative results, more ablative studies, additional details

of the training strategy, a discussion of the FERPlus dataset,

a more in-depth qualitative analysis using the MDS plot.

We hope that the content of the supplemental could relieve

inquiries arising from the main paper.

1. Implementation details

We use the EfficientNet-b2 [12] as a CNN backbone and

sharpness-aware minimization (SAM) [2] as our optimizer,

following [11]. We additionally conduct experiments uti-

lizing ResNet50 [3], Adam optimizer [5], and 224 × 224
image resolution to ensure a fair comparison and report the

results in the Sec 3.1. Grayscale, horizontal flip, and color

jitter were used for data augmentation. We conduct train-

ing in batches, considering the image set x mentioned in

Sec. 3 of the main paper as one batch. The batch size of

the benchmark dataset was set to 32. The number of the

first few epochs, which use only classification and atten-

tion modules, is denoted epochpre. How epochpre was deter-

mined can be found in Table 8 and Sec 4. In the RMset, we

use 50 positives and negatives per anchor, respectively, and

sample 10% of them using attention to the anchor. All facial

data utilized in the framework underwent facial alignment

before entry.
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2. Reaction Mashup dataset (RMset)

2.1. RMset license and disclosure

We gathered the RM videos from YouTube to establish

the RM dataset (RMset). YouTube explains its provisions

for fair use, such as for research purposes. The collection of

videos was conducted within the framework of a Creative

Commons license.

Upon acceptance of the paper, we plan to publicly share

the YouTube links and the code used to collect the data,

along with the normalized raw data that can be used to repli-

cate our results. Before publishing, we will normalize the

pixel values of the raw data the same way we did for train-

ing our model to ensure the privacy of the individuals de-

picted in the videos. In addition, the RMset can be easily

expanded further by utilizing the publicly available source

videos and provided code. This scalability is a notable ad-

vantage over traditionally labeled datasets, which are typi-

cally more challenging to expand.

2.2. Keywords used for collection

The RM dataset (RMset) was compiled through a two-

step process. Initial searches were conducted using the key-

word ‘reaction mashup video,’ followed by specific key-

words indicated in Table 1 to identify videos corresponding

to various expressions. The facial expressions in the RM

videos are not clearly discretized, but we can make a rough

distinction based on the trigger film and the approximate hu-

man reactions. Furthermore, even if the facial expressions

are not all the same in one video, the basic assumptions

of our RM videos (Fig. 1 in the main paper) are satisfied.

This situation does not pose a significant challenge due to

our utilization of inter-sample attention and attention-based

contrastive learning during the sampling process.

Expression Search Keywords

Happiness, Surprise
K-pop, fan cam, action movie,

hero movie, amazing football plays

Sadness missing father, try not to cry, 911 call, touching

Fear, Surprise
horror movies trailer, try not to get scared,

do not watch at night, creepiest

Disgust, Contempt
try not to look away, anime death,

freakshow, racist, jocker, animal abuse

Anger try not to get mad, racism, discrimination, 911

Table 1. Keywords used in video search

2.3. Statistics for RMset

We collected a total of 216 videos for all expressions.

Additional statistics on the collected RMset are presented

in Table 2. Several facial expressions may appear together

in the same video; therefore, we categorized the expres-

sions based on the keywords used to search for them. The

‘video #,’ ‘face #,’ ‘frame #,’ and ‘image #’ denote the num-

ber of videos collected related to the corresponding expres-

sions, the number of different identities within the videos,

the number of total frames for videos and total facial im-

ages obtained, respectively. Additionally, the RMset col-

lects more negative facial expressions (disgust, anger, con-

tempt, etc.), which are lacking in the existing FER dataset.

This can be seen by comparing Table 2 and Table 10. As

a result, our model significantly improves accuracy on neg-

ative facial expressions, such as ‘Disgust’ and ‘Contempt.’

This will be discussed in more detail in Sec. 5.

Expression video # face # frame # image #

Happiness, Surprise 48 702 562, 261 7, 763, 728
Sadness 30 657 418, 141 6, 334, 245

Fear, Surprise 64 985 561164 7, 367, 635
Disgust, Contempt 60 938 1, 392, 316 21, 492, 401

Anger 14 196 206, 817 2, 612, 570
Total 216 3, 478 3, 140, 699 45, 570, 580

Table 2. Statistics of the proposed RMset

3. Additional results
3.1. Quantitative comparison in the same imple-

mentation detail

In the main paper, we report the results of experiments

with the SAM optimizer [2] with 260 × 260 images, us-

ing EfficientNet-b2 [12] as a backbone. To ensure fairness

to other methods, in this section, we include the results of

experiments using the Adam optimizer [5], 224 × 224 im-

ages, and ResNet50 [3] as the backbone. ResNet18 was

not included in the comparison due to its small model size,

which led to a collapse problem during contrastive learn-

ing [15]. As a result, we replaced the backbone of EAC [14]

and SOFT [9] with ResNet50.

Method AffectNet-7

EAC [14] 65.83

SOFT [9] 65.93

Ours w/o ACL, IAL 65.69

Ours w/o ACL 66.06

Ours 66.39

Table 3. Quantitative comparisons with state-of-the-art methods in

identical implementation details (i.e., ResNet50, Adam optimizer,

224× 224 image).

Our methodology achieves superior performance com-

pared to the other two models, even when using identi-

cal implementation details such as ResNet50, Adam opti-

mizer, and 224× 224 images. To implement EAC [14] and

SOFT [9], we followed the Github repositories provided in

their respective papers and only made modifications to the

backbone.



3.2. Comparison of using RMset with an existing
dataset or data augmentation.

We conducted several additional experiments to demon-

strate the effectiveness of the RMset. Table 4 shows the

results of the experiments. First, we compared the base-

line with the RMset trained by increasing the data with

mixup [13] data augmentation. ‘Ours w/o ACL, IAL’ is

the baseline without our additional modules, and ‘Ours w/o

ACL, IAL + DA (mixup)’ is the baseline with mixup ap-

plied. Using mixup, we see a slight increase in performance

over the baseline but less than our entire model.

Furthermore, we conducted attempts at attention-based

contrastive learning (ACL) using pre-existing datasets, ex-

cluding the RMset: ‘Ours (AffectNet)’ uses the Affect-

Net same as the benchmark dataset to ACL, and ‘Ours

(CelebA)’ applies CelebA [8] to ACL. Since the prior used

in the RMset is unavailable for these two datasets, we used

Pimp and Nimp for ACL by sampling only by cosine simi-

larity from a random set of anchors, positives and negatives.

The ACL with AffectNet had the effect of reinforcing the

inter-sample attention learned by IAL on the same data, but

it did not help to improve performance and caused a drop in

performance. Conducting ACL on CelebA did not lead to a

decline in performance but it did not yield a significant im-

provement. This is because the CelebA is not a FER dataset.

Hence, it offers a limited range of facial expressions. Addi-

tionally, attention alone does not provide optimal outcomes

for contrastive learning.

On the other hand, as our RMset is a dataset created

from reaction videos, we can train the model with a wide

variety of subtle facial expressions using this dataset. Self-

supervised learning is possible because of its assumption

and ACL, even for identities not learned in the benchmark

dataset. Finally, the combination of prior on our RMset and

attention-based contrastive learning allows for proper sam-

pling, which is an effective synergy.

Methods AffectNet-7

Ours w/o ACL, IAL 66.13
Ours w/o ACL, IAL + DA (mixup) 66.3

Ours w/o ACL 66.33
Ours (AffectNet) 66.28
Ours (CelebA) 66.33

Ours 66.85

Table 4. Quantitative comparison of using the RMset with an ex-

isting dataset or data augmentation. ‘DA’ denotes data augmenta-

tion.

3.3. Semi-supervised methods with the RMset

Typically, other semi-supervised methods split the

benchmark dataset into labeled and unlabeled data portions.

In contrast, our model utilizes newly created unlabeled data,

which may introduce unfairness due to differences in the

amount of data. To address this, we applied the RMset to

AdaCM [7], a semi-supervised method that can use addi-

tional unlabeled data, and reported the experimental results

in Table 5. The experiment utilized 4, 000 annotated sam-

ples from RAF-DB.

Table 5 indicates that AdaCM [7] performs better with-

out utilizing the RMset compared to when they are used,

and our model outperforms AdaCM [7] regardless of the

utilization of the RMset. This is due to AdaCM [7] not fully

exploiting the potential of the RMset. In contrast, our semi-

supervised contrastive framework is designed to effectively

leverage the RMset, as evidenced by the consistent perfor-

mance improvement of the ACL in Table 2 of the main pa-

per. Therefore, simply increasing the amount of unlabeled

data may not always lead to performance improvement un-

less the method is specifically designed to leverage the data.

Method RAF-DB (%)

AdaCM w/o RMset 84.4

AdaCM* 82.27

Ours* 87.13

Table 5. Quantitative comparisons with AdaCM were performed

using the RMset. The asterisk (*) indicates that the RMset was

used.

3.4. Time efficiency

Our method, which samples useful data from an unla-

beled dataset, differs from standard approaches in that it in-

corporates an unlabeled dataset as well as the benchmark

dataset for training. It may raise concerns about increased

training time. However, in experiments conducted under the

same conditions, we found that our method takes 28 min-

utes per epoch on AffectNet, while the EAC [14] takes 27

minutes on the same dataset. The difference in training time

is not statistically significant.

3.5. Hyper-parameter analysis

In this section, we present an analysis of our model’s

performance on AffectNet [10] with respect to the hyper-

parameters λ1, λ2, and τ .

Initially, we identified the learning rate through ‘Our w/o

ACL, IAL’ and fixed it. Then, we performed a grid search

on IAL by increasing λ1, which is the weight of LIAL, from

0.1 to 1.2 in increments of 0.1 and let the scale τ have four

values: 0.1, 0.25, 0.5, and 1.0.

In IAL, as τ increases, the cosine similarity between

samples tends to be similar for the same facial expression

and different for distinct facial expressions. Table 6 pro-

vides a difference between the average cosine similarity



among samples with the same labels and those with differ-

ent labels. A larger difference between these values sig-

nifies an improved separation of similarity across different

labels. However, it is important to note that this difference

does not directly correlate with accuracy. Table 7 demon-

strates that a larger τ , which causes a larger difference of

cosine similarity, does not always result in a higher accu-

racy. (The values of λ1 in Table 7 are near the best accuracy

for each value of τ .) Setting τ to 0.25 leads to a slight im-

provement in overall accuracy. The inter-class separation

between labels is not too robust, reflecting the subtle and

complex nature of facial expressions, making them chal-

lenging to annotate. Therefore, a value of τ = 0.25, which

is neither too large nor too small, was determined to be the

optimal choice.

Subsequently, we fix the values of τ and λ1 in order to

find the optimal value of λ2, the weight of LACL, in ACL.

Table 7 shows that when τ is set to 0.25, the change in per-

formance while changing the value of λ1 is not significant

in IAL. Consequently, we established the optimal values in

ACL as τ = 0.25 and λ1 = 1.0. Subsequently, we system-

atically adjusted λ2 across a range of tenfold increments,

spanning from 0.001 to 1.0 to find the optimal value of λ2.

After several cross-validations, we found an optimal value

of λ2 = 1.0.

We conducted additional experiments to determine the

interaction between λ2 and τ . Both λ2 and τ tend to maxi-

mize intra-class similarity and inter-class separation as they

get larger. From Table 7, we can observe that small values

of λ2 do not improve performance, indicating that a certain

level of contrastive learning is necessary for good classifi-

cation performance. Furthermore, when we fixed λ2 = 1.0
and varied the value of τ , the performance was still poor at

the extreme values of 0.1 and 1.0 but good at the middle

values of 0.25 and 0.5.

The information above demonstrates that the hyperpa-

rameters can differ based on levels of intra-class similar-

ity and inter-class separation within the dataset. It be-

came evident that these hyperparameters are influenced by

the dataset’s specific characteristics. Consequently, we fol-

lowed a similar hyperparameter tuning approach for both

the RAF-DB and FERPlus datasets. Hyper-parameters are

summarized in Table 8.

τ
Dfference of

cosine similarity

0.1 0.3083

0.25 0.4413

0.5 0.5133

1.0 0.5589

Table 6. The difference between the cosine similarity of samples

with the same and different labels in AffectNet-7.

IAL parameters
Accuracy(%)

ACL parameters
Accuracy(%)

λ1 τ λ1 λ2 τ
0

0.1

0

1.0 0.001

0.1 66.13

0 0 0.25 66.22

0 0 0.5 66.19

0 0 1.0 66.02

0.9

0.25

66.3

1.0 0.01

0.1 66.1

1.0 66.33 0.25 66.22

1.1 66.22 0.5 66.13

1.2 66.28 1.0 66.08

0.2

0.5

66.25

1.0 0.1

0.1 66.05

0.3 66.3 0.25 66.16

0.4 66.28 0.5 66.1

0.5 66.16 1.0 66.22

0.4

1.0

66.25

1.0 1.0

0.1 66.25

0.5 66.3 0.25 66.85
0.6 66.25 0.5 66.7

0.7 66.22 1.0 66.53

Table 7. Hyperparameter analysis of λ1, λ2, and τ from an accu-

racy perspective in AffectNet-7

AffectNet
RAF-DB

FERPlus

7 emo 8 emo overall average

epochpre 3 10 20
epochtotal 30 500 100

lr 2× 10−6 1× 10−4 1× 10−4 1× 10−5

τ 0.25
λ1 1.0 0.4 0.7 1.0
λ2 1.0 0.001 0.002 0.001 0.1
γ 0.1

Table 8. Hyper parameters in the RMFER

Figure 1. Average inter-sample attention value between samples

with the same label over epochs.

4. Training strategy in IAL and ACL
Why the classification module is trained together in IAL
pre-training. In the IAL pre-training phase, ensuring that

inter-sample attention is being adequately trained is of ut-



most importance. We introduce a novel measure for evalu-

ating and quantifying inter-sample attention. This measure

represents the mean inter-sample attention value among

samples sharing the same label within the test set. Fig. 1

shows it graphed over epochs. ‘Ours w/o ACL’ is IAL

pre-training with classification and attention modules, and

‘Ours w/o ACL, FER’ uses only an attention module in IAL.

As shown in Fig. 1, using both modules results in higher

inter-sample attention than using only the attention module.

Also, as shown in Table 9, better performance is guaranteed

when the classification module is trained together.

When to add and train the contrastive module. The con-

trastive module of ACL reinforces the inter-sample atten-

tion learned by IAL, which maximizes intra-class similarity

and inter-class separation, as shown in Fig. 4. Therefore,

we add the contrastive module and RMset to perform ACL

together starting from epoch 3, when inter-sample attention

is moderately learned (See Fig. 1.) We do not start at four

epochs when inter-sample attention is maximized because

excessive IAL can break the classification module. There-

fore, we start ACL at three epochs when inter-sample at-

tention converges. As we saw in hyper-parameter tuning,

different datasets have different degrees of intra-class sim-

ilarity and inter-class separation. Therefore, the epoch at

which attention converges is different for each dataset.

How long to train the model. Since the RMset is a huge

dataset, the performance improvement takes time after start-

ing attention-based contrastive learning. In AffectNet-7,

‘Ours w/o ACL’ converges after 15 epochs, however in the

case of ‘Ours’, the performance improvement on the test set

continues until 30 epochs. The total training epoch for each

dataset is reported as epochtotal in Table 8. Since RAF-DB

is a smaller dataset compared to AffectNet-7, more epochs

are required to fully train the RMset. FERPlus tends to con-

verge faster than the other datasets, and it required fewer

training epochs than RAF-DB.

FER using SimCLR with the RMset. We reproduced

‘SimCLR’ [1], by first performing the contrastive learning

on the RMset and performing the finetuning on the bench-

mark dataset. The results (AffectNet-7) are shown in Ta-

ble 9. The performance is 66.39%, and this is better than

‘Our w/o ACL, IAL’ that is not using the RMset, however

it is worse than ‘Ours’. From the results, we can extract

two lessons: (1) RMset is effective for improving the per-

formance: even in the ‘SimCLR’ framework, the RMset can

improve the performance. (2) ‘SimCLR’ framework is ef-

fective; however ‘Ours’ is better alternative to ‘SimCLR’

when involving the RMset.

Why the attention module is still being learned in the
ACL. In Table 9, ‘Ours w/o IAL’ denotes the ACL train-

ing that exclusively trains the classification and contrastive

modules, excluding the attention module. The performance

of ‘Ours w/o IAL’ is better than ‘Ours w/o ACL’, but it

gets better when trained together with the attention module

in ACL. This is because the inter-sample attention of the

benchmark dataset is gradually forgotten, and the possibil-

ity of a collapse in contrastive learning, which is the worst

case, increases.

Methods AffectNet-7

SimCLR [1] 66.39

Ours w/o ACL, IAL 66.13

Ours w/o ACL, FER 63.39

Ours w/o IAL 66.42

Ours 66.85

Table 9. Performance on AffectNet-7 with different module com-

binations

5. Discussion of FERPlus

Our framework exhibits a decline in overall accuracy

across the IAL and ACL of FERPlus evaluation due to the

excessive class imbalance in the test set. In this section,

we discuss the difference between overall and average accu-

racy, why overall accuracy decreased and average accuracy

increased in FERPlus, and the effectiveness of using RMset

to mitigate class imbalance in the benchmark dataset.

5.1. Overall accuracy and average accuracy

As explained in the main paper, we employed two met-

rics to evaluate our model’s performance: ‘overall accuracy’

and ‘average accuracy.’ Overall accuracy quantifies the pro-

portion of correctly predicted samples out of the total, re-

gardless of the accuracy for each individual class. This mea-

sure is particularly useless when dealing with imbalanced

test sets, as it gives more weight to classes with larger sam-

ple sizes. In contrast, average accuracy computes the mean

accuracy across all classes, ensuring that each class is con-

sidered equally, irrespective of any test set imbalances. It

can be expressed as follows:

Accoverall =

∑C
i=1 Acci ×Ni
∑C

i=1 Ni

(1)

Accaverage =

∑C
i=1 Acci

C
(2)

Where C is the number of classes, Ni is the number of

samples in the i-th class, and Acci is the accuracy in the i-th
class. When the test set is balanced, there is no difference

between overall accuracy and average accuracy. However,

if the test set is imbalanced, these two metrics will be dif-

ferent in their values. Moreover, the greater the imbalance

within the test set, the greater the difference.



(a) KTN (b) Ours w/o ACL, IAL (c) Ours

Figure 2. Confusion matrices of KTN [6], Ours w/o ACL, IAL, and Ours

5.2. Discrepancy between overall accuracy and av-
erage accuracy

Our approach demonstrates that the overall accuracy of

FERPlus tends to decline with the inclusion of IAL and

ACL, while the average accuracy sees an improvement.

This is due to two reasons: Firstly, FERPlus exhibits

a notably imbalanced test set when compared to other

datasets. Not only is it more imbalanced than AffectNet,

which maintains an equal number of samples for all classes

in the test set, but it also surpasses the imbalance seen in

RAF-DB, which is highly imbalanced. As indicated in Ta-

ble 10, the ‘Disgust’ and ‘Contempt’ classes, in particular,

have relatively fewer samples in the FERPlus test set com-

pared to other datasets.

The second reason is that our approach aims to enhance

performance across all classes by learning inter-sample at-

tention, rather than focusing solely on one majority class.

It is crucial to balance the classes within the training batch

to effectively learn inter-sample attention in the IAL, en-

suring the model learns inter-sample attention between all

facial expressions. This approach results in less variation

in accuracy across classes. Additionally, as the RMset is

designed to balance facial expression classes as much as

possible after utilizing the benchmark dataset, the ACL fur-

ther enhances performance across these classes. The details

of how the RMset is designed to balance facial expression

classes during training are discussed in Sec. 5.3.

Therefore, as the learning progresses, the average accu-

racy increases while overall accuracy decreases because of

the imbalance of the test set. In contrast, for other models

with high overall accuracy (such as KTN [6] and FER-VT

[4]), the average accuracy is inferior to that of our frame-

work, and there is a significant discrepancy in accuracy be-

tween classes. Therefore, our model is robust in terms of

average accuracy on FERPlus. The corresponding confu-

sion matrix is presented in Fig. 2.

5.3. Balanced learning with the RMset

Table 10 illustrates that FERPlus exhibits a severe im-

balance, with Fear, Disgust, and Contempt represented in

small proportions. As shown in Fig. 2 (a), the performance

of KTN [6] on expression labels with limited samples, such

as Fear, Disgust, and Contempt, is notably weak. However,

as the test set labels are also imbalanced, the overall accu-

racy does not fully capture this imbalance.

On the other hand, our model learns to avoid signifi-

cant differences in accuracy between classes in both IAL

and ACL. In the IAL, we ensured class balance within each

training batch, as previously explained. In the ACL, we

extended this approach by incorporating the RMset. The

RMset is specifically designed to include a significant num-

ber of negative facial expressions, including categories like

‘Disgust’ and ‘Contempt,’ which were notably underrep-

resented in existing labeled datasets. As a result, Fig. 2

(b) demonstrates a significantly smaller performance devi-

ation between expressions with limited and abundant sam-

ples compared to KTN [6]. (We enforced in-batch balance

even when training only the classification module without

IAL and ACL.) Furthermore, Figure 2 (c) demonstrates

that our complete model, which integrates IAL and ACL,

consistently maintains performance that is on par (within

a 1-2% deviation) with the baseline for facial expressions

other than Disgust and Contempt. Notably, the model sig-

nificantly improves performance for expressions with very

few samples, such as Disgust (with a 4% increase) and Con-

tempt (with an 8% increase), improving average accuracy.

This also means that when RMset is expanded, RM-

FER can learn additional facial expressions based on the

benchmark dataset and compensate for the lack of facial ex-



(a) Ours (b) Ours w/o self-masking

Figure 3. Visualization of attention for the samples of the RMset. As we involve IAL and ACL, the attention becomes better: Attention

needs to be higher for similar expressions; while becoming less for different expressions with the same identity.

pressions in the existing training benchmark dataset with-

out annotation. See Table 10, you can check the number

of samples in training sets for all cases. In many FER

datasets, positive and easily obtainable data such as ‘Happi-

ness’ are abundant, while negative emotions like ‘Disgust’

and ‘Anger’ are less readily collected and thus less common.

However, the RMset is a dataset that notably encompasses

a higher quantity of these negative reactions.

Expression
FERPlus RAF-DB AffectNet-7

Training Testing Training Testing Training Testing

Neutral 10,309 1,262 2,524 680 74.833

500

Happiness 7,528 928 4,772 1,185 134,304

Sadness 3,515 444 1,982 478 25,441

Surprise 3,562 444 1,290 329 14,078

Fear 652 93 281 74 6,374

Disgust 191 23 717 160 3,801

Anger 2,467 325 705 162 24,873

Contempt 165 27 - - 3,746

Table 10. The number of samples for each facial expression in

the training and testing sets of FERPlus, RAF-DB, and AffectNet.

The number of fear, disgust, and contempt facial expressions in

the FERPlus is significantly lower in the training and testing sets

than in other facial expressions and datasets.

6. Additional ablation study
6.1. Effects on γ.

An ablation study was conducted on the hyperparameter

γ used for sampling the improved Pimp and Nimp. Table 11

shows results on testing sets when γ is manipulated from 0
to 1.0. As the gamma ratio decreases from 1.0 to 0.1, the

accuracy becomes robust by effectively filtering out unnec-

essary samples; if γ is less than 0.1, the accuracy becomes

less as insufficient samples are used for the training.

We also added the ‘ratio of filtered samples that have

the same label with the anchor sample’ result from ‘Ours

(AffectNet)’ in Table 4, by varying the γ in Table 12. Natu-

rally, a smaller γ leads to a higher proportion of correctly fil-

tered samples. However, our experimentation found that 0.1

was the optimal value. When γ falls below 0.1, it results in

an insufficient number of samples for effective contrastive

learning. Furthermore, considering that this ratio is calcu-

lated from the entire AffectNet test set, the combination

of ACL with the prior information from the RMset yields

a significantly enhanced positive and negative set, thereby

contributing to overall performance improvement. Addi-

tionally, samples are better filtered according to semantic

classes by involving ACL modules.

γ
RAF-DB

AffectNet-7
overall average

0.05 91.17 85.26 66.39

0.1 91.33 85.59 66.85
0.5 91.04 85.04 66.33

1.0 91 84.32 65.99

Table 11. Ablation study of γ

γ Ours w/o ACL, SM Ours w/o ACL Ours w/o SM Ours

0.05 41.7 45.0 44.2 50.3
0.1 41.2 42.8 41.8 46.0
0.5 23.2 23.7 22.3 23.6

Table 12. The ratio of filtered samples having the same label as

the anchor sample about ACL, SM, and γ in AffectNet-7. ‘SM’

denotes self-masking.

6.2. Effects of self-masking softmax on attention

Self-masking softmax has a more positive impact

on inter-sample attention learning by preventing self-



referencing. In the main paper, we looked at this from a

performance perspective. However, here, we evaluate this

aspect using two quantitative measures, the cosine similar-

ity and filtering ratio, in addition to presenting qualitative

results in Fig. 3.

Firstly, considering the difference between the average

cosine similarity among samples that share the same labels

and those that have different labels similar to Table 6, Ta-

ble 13 illustrates that the implementation of self-masking,

both in the IAL and ACL, leads to an increase in the cosine

similarity between samples sharing the same label, while si-

multaneously reducing the cosine similarity between sam-

ples with different labels.

In Table 12, adding self-masking (SM) to the framework

improves filtering performance. When γ is 0.05, the per-

formance improvement from ‘Ours w/o ACL, SM’ to ‘Ours

w/o ACL’ is about 3.3%, and the improvement from ‘Ours

w/o SM’ to ‘Ours’ is 6.1%. This suggests that self-masking

leads to better filtering, which could be one of the out-

comes of learning proper inter-sample attention. Moreover,

the combination of self-masking and ACL results in an en-

hanced filtering performance, making this combination a fa-

vorable choice.

Fig. 3 (a) visualizes the positive and negative sets of at-

tention to anchor presented in the main paper. In this case,

(a) uses a model with self-masking. In contrast, (b) uses a

model without self-masking. As a result, the difference in

attention value between models, which was relatively strong

in (a), is weaker in (b). This suggests that self-masking

strengthens IAL and ACL.

Methods
Dfference of

cosine similarity

Ours w/o ACL, SM 0.3725

Ours w/o ACL 0.4426

Ours w/o SM 0.3904

Ours 0.4716

Table 13. The difference between the cosine similarity based on

self-masking AffectNet-7

7. MDS plots
The main paper presented the MDS plot on AffectNet-

7 simultaneously for all classes. In this supplemental, we

visualized the MDS plots for three models (i.e., ‘Ours w/o

IAL, ACL,’ ‘Ours w/o ACL,’ and ‘Ours’) in the “class-wise

manner” in Fig. 4 to make them better visible. In the first

row of Fig. 4, we visualized the MDS plot for all classes;

while in the remaining rows, we visualized it class by class.

In each class, we could find the points gathered as IAL and

ACL were used (from the left to the right column). Also,

the average distance between the center and the samples in

each expression class is presented in Table 14 to provide the

numerical measure for the distribution. We could concretely

conclude that the distribution becomes better and better as

more learning strategies of our framework (i.e., IAL, ACL)

are used.

expression

category

Ours w/o

ACL, IAL

Ours w/o

IAL
Ours

Neutral 0.369 0.339 0.337
Happiness 0.223 0.199 0.181
Sadness 0.397 0.336 0.274
Surprise 0.240 0.338 0.274

Fear 0.256 0.261 0.246
Disgust 0.327 0.309 0.347

Anger 0.491 0.493 0.375
Average 0.329 0.325 0.291

Table 14. Mean of distance from the center in MDS plot





(a) Ours w/o ACL, IAL (b) Ours w/o ACL (c) Ours

Figure 4. MDS plot of (a) Ours w/o ACL, IAL, (b) Ours w/o ACL, (c) Ours for each class in AffectNet-7. The mean distance from the

center is presented in Table 14.

References
[1] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Ge-

offrey Hinton. A simple framework for contrastive learning

of visual representations. In ICML, 2020.

[2] Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam

Neyshabur. Sharpness-aware minimization for efficiently

improving generalization. In ICLR, 2020.

[3] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In CVPR,

2016.

[4] Qionghao Huang, Changqin Huang, Xizhe Wang, and Fan

Jiang. Facial expression recognition with grid-wise attention

and visual transformer. Information Sciences, 2021.

[5] Diederik P Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. In ICLR, 2015.

[6] Hangyu Li, Nannan Wang, Xinpeng Ding, Xi Yang, and

Xinbo Gao. Adaptively learning facial expression represen-

tation via cf labels and distillation. TIP, 2021.

[7] Hangyu Li, Nannan Wang, Xi Yang, Xiaoyu Wang, and

Xinbo Gao. Towards semi-supervised deep facial expression

recognition with an adaptive confidence margin. In CVPR,

2022.

[8] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang.

Deep learning face attributes in the wild. In ICCV, 2015.

[9] Tohar Lukov, Na Zhao, Gim Hee Lee, and Ser-Nam Lim.

Teaching with soft label smoothing for mitigating noisy la-

bels in facial expressions. In ECCV, 2022.

[10] Ali Mollahosseini, Behzad Hasani, and Mohammad H Ma-

hoor. Affectnet: A database for facial expression, valence,

and arousal computing in the wild. IEEE Transactions on
Affective Computing, 2017.

[11] Andrey V Savchenko, Lyudmila V Savchenko, and Ilya

Makarov. Classifying emotions and engagement in online

learning based on a single facial expression recognition neu-

ral network. IEEE Transactions on Affective Computing,

2022.



[12] Mingxing Tan and Quoc Le. Efficientnet: Rethinking model

scaling for convolutional neural networks. In ICML, 2019.

[13] Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and

David Lopez-Paz. mixup: Beyond empirical risk minimiza-

tion. In ICLR, 2018.

[14] Yuhang Zhang, Chengrui Wang, Xu Ling, and Weihong

Deng. Learn from all: erasing attention consistency for noisy

label facial expression recognition. In ECCV, 2022.

[15] Kai Zheng, Yuanjiang Wang, and Ye Yuan. Boosting con-

trastive learning with relation knowledge distillation. In

AAAI, 2022.


