
1. Expected Number of Correspondences

In Sec. 3 of the main paper, we point out that ran-
domly subsampling stereoKITTI’s input point clouds does
not fix the one-to-one correspondence issue because there
are still an expected 745 points with correspondences. Here,
we explain how we arrived at that number. Each exam-
ple in stereoKITTI comprises approximately 90,000 pairs
of points (pi, qi). Many methods uniformly sample 8192
points from the pi’s, and the qi’s separately. For each chosen
pi there is some probability that its corresponding qi is also
chosen as input, and there is a random variable X , which is
the number of times this happens. We are interested in com-
puting the expectation of this random variable. Let Φ be the
indices of the 8192 points chosen for the first frame. Now
let xi be an indicator random variable that is 1 if qi is cho-
sen as input and 0 otherwise. Observe that X =

∑
i∈Φ xi

and E[xi] = p(qi is chosen) = 8192
90000 . By the linearity of

expectation: E[X] =
∑

i∈Φ E[xi] = 8192 · 8192
90000 ≈ 745.

2. Label Creation

Multiple authors have used ground truth multi-object
tracks to scene-flow labels [1, 2]. We follow the same pro-
cedure to create labels for Argoverse 2.0.

Problem Statement: We assume as input two point
clouds Pt ∈ RN×3,Pt+∆ ∈ RM×3. The superscript in-
dicates that these point clouds are separated by a small time
delta (usually ∆ = 0.1s), and the variables N,M indicate
that the two point clouds have different numbers of points.
The goal is to predict a set of flow vectors {fi ∈ R3}Ni=1

which describe the motion of each point from time t to time
t + ∆. Some datasets also give access to the ego-motion
of the sensor since in the autonomous vehicle setting this
information is available from odometry or GPS.

Flow Label Creation: For each point cloud in a MOT
dataset we have a set of oriented bounding boxes {Bt

i}Ki=1.
For each Bt

i , if the second frame at time t + ∆ contains a
corresponding bounding box Bt+∆

j , we can extract the rigid
transformation Rt

i, t
t
i that transforms points in the first box

to the second. For each point pj inside the bounding box we
assign it the flow fj = Ripj + ti. Points not belonging to
any bounding box are assigned the ego-motion as flow. For
objects which only appear in one frame, we cannot compute
the ground truth flow and so they are ignored for evaluation
purposes but included in the input.

Limitations: This procedure for producing flow labels
has two drawbacks. First is that all the points inside a
bounding box may not be moving rigidly. While it is im-
portant to be aware of this we believe the errors introduced
are small since most objects are rigid vehicles and the sam-
pling rate of 10Hz prevents large deviations from the model.
Second, there can exist objects that are not captured by the
tracking labels but are nonetheless dynamic. This second

limitation is the main reason for our interest in self- and
un-supervised methods as existing work has demonstrated
degradation of supervised performance on objects not in-
cluded in the training labels [2]. However, it is supervised
training that creates the correlation between performance
on an object class and its presence in the labels. For self-
supervised methods we expect performance on tracked ob-
jects to correlate with those that may be missing.

3. Local Dynamic Segmentation Model Details
In Sec. 3 of the main paper, we use a local classification

model to demonstrate how the sampling pattern of dynamic
objects in stereoKITTI makes it trivial to identify moving
vs. static objects. Here we give details of the architecture
of that model. The architecture is shown in Fig. 1 and is
essentially a very simple version of PointNet [5] with the
transform modules removed. The key component of this
model is that the input contains only the relative positions
of the query point’s neighbors, so no global information is
available to the network.

4. Optimization Details
Our baseline uses 6 parameters, which we detail here.

In general, the same parameters are used across all datasets
(Arogverse, Waymo, NuScenes, lidarKITTI). However, due
to the large variations in sparsity in both Waymo and
NuScenes two parameters were adjusted: the early stopping
criterion, and the DBSCAN epsilon parameter. These ad-
justments were not found through a parameter search, but
by visually inspecting the flow results and clusters respec-
tively.

Neural Prior Parameters: The forwards and backward
flow networks have the same structure as [4] and we op-
timize them with the Adam [3] optimizer using a learning
rate of 0.004 and no weight decay. We stop the optimiza-
tion when no progress is made for 100 iterations (200 when
optimizing on Waymo).

RANSAC Parameters: For all clusters, we do 250
RANSAC iterations and we use an inlier threshold of 0.2.
When thresholding on the translation component, we use
the same threshold as the dataset’s dynamic threshold:
0.5m/s.

DBSCAN Parameters: For Argoverse, Waymo and
lidarKITTI we use an epsilon parameter of 0.4 but for
NuScenes we increase this to 0.8 due to the sparsity. For
all datasets, we use a minimum point threshold of 10.

5. Ablation
To test the components of our method, we performed an

ablation study on Argoverse. The results are shown in Tab. 1
and show that both Motion Compensation and Rigid Refine-
ment play key roles in improving the performance of the



Figure 1. Our local segmentation model only uses information about the relative position of points in a local neighborhood around the
predicted point. The local and global MLPs each have two hidden layers of 64 units.

EPE AccR AccS

Avg Dynamic Static Dynamic Dynamic

FG FG BG FG FG

Backbone 0.088 0.193 0.033 0.039 0.542 0.327
w/ Motion Compensation 0.066 0.112 0.042 0.046 0.756 0.515
w/ Motion & w/ Rigid Refinement 0.055 0.105 0.033 0.028 0.777 0.537

Table 1. Ablation of the two main components of our model, mo-
tion compensation and rigid refinement.

backbone scene flow method. Motion Compensation has
the largest impact on estimating dynamic motion since it al-
lows the network to simply assign zero to all background
points. The rigid refinement step improves dynamic mo-
tion estimates as well, but also has a large impact on static
points. This is due to it fixing phantom motion estimates on
walls caused by “swimming” artifacts.
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