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In this supplementary document, we provide detailed in-
formation regarding the implementation of our approach
for different benchmarks in Section 1. Additionally, in
Section 2.5, we present a comprehensive comparison of
domain generalization performance on the Camelyon-17-
Wilds benchmark, evaluating multiple models including
Convolution Neural Networks (CNN), CNN trained with
Random Convolution, our XCNorm, R-XCNorm, and R-
XCNorm trained with Random Convolution.

1. Experimental and Implementation Details

We built our proposed XCNorm & R-XCNorm networks
by replacing the convolution and dense layers in the corre-
sponding CNN architectures (LeNet for Digits, WideRes-
Net for CIFAR-10-C, and ResNet-18 for Camelyon-17 and
DomainNet) with either XCNorm or R-XCNorm layers
that have the same number of channels and kernel size.
Sharpening and NBAM were applied to all layers except
the last layer. The last layer consists of XCNorm or
R-XCNorm with Sharpening and Gradient scaling. The
remaining hyper-parameters including learning rate, and
number of iterations were tuned using hold-out validation
data from the source domain. The architecture of our pro-
posed XCNorm& R-XCNorm networks was based on their
respective convolution neural network counterpart men-
tioned above. To facilitate fairer comparisons, we replaced
convolution and dense layers in CNN with either XCNor-
mor R-XCNormlayers with the same number of channels
and kernel size. The activation functions (e.g. ReLU) and
normalization layer (e.g. Batch Normalization) between
layers were removed from the original network architecture.

1.1. Digits-DG

Experimental Setup: In line with previous works on S-
DG [3–6], we adopted the same experimental setup. Specif-
ically, we resized all training images to 32 × 32 and con-
verted them from grayscale to RGB format by duplicating
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the channels. We also adopted the LeNet architecture as the
backbone network and trained it with a batch size of 32.

1.2. CIFAR-10-C

Experimental Setup: Our experiments were conducted us-
ing the CIFAR-10 training set, comprising 50, 000 images
for model training. The trained models were evaluated on
the corrupted test set, which consisted of 10, 000 images.
We utilized the widely adopted WideResNet (16-4) archi-
tecture as our backbone network, following prior works.
Model optimization was performed for 100 epochs using
the Adam optimizer with a batch size of 128. The initial
learning rate was set to 1e−3, and a cosine annealing sched-
uler was employed.

1.3. Camelyon-17

Experimental Setup: In line with the WILDS bench-
mark [1], we consider each medical center as an individ-
ual domain. Our experimental procedure involves training
models on a single domain and evaluating their performance
on the remaining domains. The source domain data is di-
vided into training and validation sets using an 80/20 split-
ting ratio. To evaluate domain generalization performance,
we utilize the AUROC metric. Following the approach out-
lined in [8], we employ the ResNet-18 architecture as our
network backbone and set the batch size to 128. All images
are resized to 96 × 96 and data augmentation techniques,
such as random horizontal flipping and random rotation,
are applied during training. The models are trained for 10
epochs using the Adam optimizer, with an initial learning
rate of 1e−3 and decayed using a cosine annealing sched-
uler.

1.4. DomainNet

Experimental Configuration: Our experimental method-
ology entails training models on the real domain and sub-
sequently gauging their performance across the remaining
domains. For the source domain data, an 80/20 split ra-
tio is adopted to segregate it into training and validation

1



Domain None Batch Instance XCNorm R-XCNorm
MNIST-M 57.25 34.00 55.25 66.67 71.00
SVHN 31.17 11.25 34.08 59.92 65.42
SYN 39.50 25.92 41.00 67.33 71.25
USPS 77.33 74.19 76.23 85.24 89.04

Table 1. Out-of-domain performance (accuracy %) comparison
between standard normalization methods and our proposed meth-
ods. The None model denotes a model without any applied nor-
malization.

Dataset Baseline XCNorm R-XCNorm
MNIST 98.56 98.79 99.17
CIFAR 91.40 90.87 91.23

Table 2. In-domain performance (accuracy %) comparison be-
tween baseline model and our proposed XCNorm and its robust
variant R-XCNorm.

subsets. In assessing single domain generalization perfor-
mance, we employ the top-1 accuracy metric. We selected
the ResNet-18 architecture as our network backbone and
configured the batch size at 64. Image dimensions are uni-
formly resized to 224 × 224, and solely random horizontal
flipping is applied for data augmentation during the training
phase. Model training spans 100 epochs, facilitated by the
Adam optimizer with an initial learning rate of 1e−3. No-
tably, all models are trained from scratch without reliance
on pre-trained ImageNet weights. Additionally, to circum-
vent models overfitting to classes with a sparse image pres-
ence, training is confined to the top 200 classes boasting at
least 500 images.

1.5. Random Convolution

We adopt the same implementation of Random Convo-
lution from the original work by Xu et al. [7]. Random
Convolution is defined as follows:

RandConv(I, k, α) = αI + (1− α)(I ∗Θ) (1)

where I ∈ R3,H,W represents the input image with spatial
dimensions H and W , k ∈ R denotes the kernel size, and
α is the mixing weight uniformly sampled from the range
[0, 1]. The convolution weights Θ are randomly sampled
from a Gaussian distribution N (0, 1

3k2 ). We sample k uni-
formly from a pool K ∈ [1, 3, ..., n], where n represents the
maximum kernel size.

For the Digits-DG and CIFAR-10-C experiments, we set
n to 5 to preserve finer shapes in low-resolution images,
such as 32×32. In the case of the Camelyon-17 dataset, we
set n to 7.

Dataset BatchSize ImageSize Baseline XCNorm R-XCNorm
MNIST 32 32×32 7.62 11.4 12.7

CIFAR-10 128 32×32 31.4 71.2 124
Camelyon-17 128 96×96 27.8 69.8 111

Table 3. Training speed (second per epoch) comparison for all se-
lected datasets and benchmark with different batch sizes and image
sizes.

Method Clipart Inforgraph Painting Quickdraw Sketch Average
Baseline 26.73 6.24 22.86 5.46 18.70 16.00
XCNorm 27.07 6.05 23.30 5.24 19.38 16.21
R-XCNorm 28.81 7.19 25.61 5.83 19.70 17.43

Table 4. Comparison of model performance on the DomainNet
dataset for single domain generalization. All methods were trained
on the real domain and the remaining domains are set as the out-
of-domain test sets.

2. Additional Experimental Results
2.1. Performance Comparison: XCNorm vs. Stan-

dard Normalization Techniques

In Table 1, we present a comprehensive comparison
of single domain generalization performance between XC-
Norm, its robust variant (R-XCNorm), and widely used
standard normalization techniques including Batch Normal-
ization (BN) and Instance Normalization (IN). This evalua-
tion is conducted on the Digits-DG benchmark dataset.

As demonstrated in Table 1, it becomes evident that BN
significantly compromises OOD performance, whereas IN
showcases minimal influence in comparison to the baseline
(absence of any normalization). In striking contrast, our
proposed approach attains notably superior performance re-
sults.

2.2. In-domain Performance Comparison

As demonstrated in Table 2, a notable similarity in
performance is evident across the MNIST and CIFAR-10
datasets among the baseline model, our method, and its ro-
bust variant. Notably, our method enhances single-domain
generalization performance without compromising within-
domain efficacy.

2.3. Training Time Comparison

In Table 3, a comparison of the training time per epoch is
presented, encompassing the baseline model, our proposed
XCNorm, and its robust iteration R-XCNorm. This analy-
sis is conducted across selected datasets, namely MNIST,
CIFAR-10, and Camelyon-17. As evident in Table 3, both
XCNorm and R-XCNorm necessitate considerably greater
computational resources compared to the baseline model.
Nevertheless, this increase of computational time is judi-
ciously balanced by the substantial improvement in out-of-
domain (OOD) performance, rendering this trade-off no-



Figure 1. Visual comparison of the ambulance class across Real
(top), Clipart (middle) and Infograph (bottom) domains.

tably advantageous.

2.4. Comparisons on DomainNet

In Table 4, we compare the single domain generalization
performance between the baseline model, our proposed XC-
Norm and its robust variant R-XCNorm on the DomainNet
benchmark [2]. The implementation details of this experi-
ment are included in Section 1.4 of this supplementary doc-
ument.

Our XCNorm demonstrates a slight performance en-
hancement compared to the baseline across the clipart,
painting, and sketch domains. However, our method suffers
from a minor performance dip in other domains, namely
infograph and quickdraw. We attribute this decline to the
additional information present in infographics, such as text
and various objects, as well as the substantial contextual
divergence between real and quickdraw domains (see Fig-
ure 1 for a visual comparison example). In contrast, our R-
XCNorm consistently amplifies single domain generaliza-
tion performance over the baseline across all test domains,
surpassing the baseline by approximately 9%, as shown in
Table 4.

2.5. Comprehensive Results on Camelyon-17

In Table 5, we present a comprehensive comparison
of domain generalization performance on the Camelyon-
17 benchmark using various models, including Convolu-
tional Neural Network (CNN), CNN with Random Con-
volution (RC), our proposed XCNorm, its robust variant
(R-XCNorm), and the robust variant trained with Random
Convolution.

The CNN model demonstrates poor generalization when
trained on a single source domain, particularly in domains 2
and 3. We attribute this to significant variations in the stain-

(a) (b) (c) (d) (e)

Figure 2. Examples of histopathology data collected from five dis-
tinct medical centers, each representing a unique domain within
the Camelyon-17 benchmark. The domains are labelled as (a)–
(e), corresponding to domains 1–5, respectively. These exam-
ples showcase the variations in the staining agent’s color and tis-
sue characteristics across different domains, highlighting the chal-
lenges of domain generalization in histopathology image classifi-
cation.

ing agent’s color across different hospitals, as illustrated in
Figure 2. However, by applying the Random Convolution
augmentation, we observe a notable improvement in perfor-
mance from 61.9% to 83.7%, as shown in Table 5.

Significantly, our proposed XCNorm and R-XCNorm
consistently outperform both the CNN model and the CNN
model trained with Random Convolution, without relying
on data augmentation techniques. Furthermore, when com-
bined with augmentation methods such as Random Convo-
lution, our approach (R-XCNorm + RC) achieves a robust
model with impressive domain generalization performance.
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Test DomainTrain Domain 1 2 3 4 5 AVG OOD Overall OOD

Convolution
1 - 94.2 69.2 71.6 75.5 77.6
2 55.8 - 83.6 38.4 36.8 53.7
3 60.3 49.2 - 34.8 59.1 50.8
4 83.0 74.2 26.3 - 64.8 62.1
5 86.1 59.1 60.5 55.4 - 65.3

61.9

Convolution + Random Convolution
1 - 87.1 95.6 89.9 90.2 90.7
2 82.4 - 67.3 74.7 68.8 73.3
3 96.9 81.7 - 86.3 97.3 89.7
4 89.1 86.3 80.2 - 89.8 86.4
5 89.5 71.8 80.5 71.2 - 78.2

83.7

XCNorm
1 - 91.4 90.9 94.9 93.0 92.5
2 88.9 - 72.9 89.1 82.3 83.3
3 93.7 89.4 - 93.6 93.1 92.5
4 92.7 92.5 88.9 - 68.3 85.6
5 93.3 91.1 93.7 92.7 - 92.7

89.3

R-XCNorm
1 - 93.1 92.5 95.7 94.5 94.0
2 87.0 - 80.3 90.5 81.7 84.9
3 94.6 89.5 - 93.8 94.9 93.2
4 93.7 94.8 88.5 - 73.3 87.6
5 95.2 92.3 96.4 93.5 - 94.4

90.8

R-XCNorm + Random Convolution
1 - 94.6 94.4 97.1 94.1 95.0
2 90.6 - 84.6 93.7 87.3 89.0
3 96.3 93.3 - 97.0 96.9 95.9
4 94.1 93.6 92.6 - 84.8 91.3
5 95.8 93.9 95.7 96.5 - 95.5

93.3

Table 5. A comprehensive comparison of model performance on the Camelyon-17 dataset for single domain generalization. The included
models are Convolution Neural Network (CNN), CNN trained with Random Convolution, our XCNorm, R-XCNorm, and R-XCNorm
trained with Random Convolution.


