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1 Appendix Structure

In Appendix 2 we present adversarial robustness scores of our approach using other architectures: Resnet-50 and Resnet-101,
demonstrating that the combination of VAT+ARF achieves SOTA robustness as shown also for Resnet-34 in the main paper.

Appendix 3 defines in detail the image transformations we used to calculate the Test Time Augmentations (TTAs) in the
paper, listing their parameter distribution and randomized ordering protocol.

Appendix 4 lists the hardware (CPUs & GPUs) we used for training our DNNs and random forest classifiers.

Appendix 5 shows several parameter searches we conducted to optimize our baselines (TRADES/VAT) to the datasets and
architecture in our experiments.

Appendix 6 shows ARF performance when replacing the random forest classifier with majority voting scheme or other
machine learning models: Logistic regression and SVM.

In Appendix 7 we show that our ARF model is transferable, generalizing very well to new (unseen) attacks.

Appendix 8 provides in depth details on the steps we implemented to utilize the BPDA attack in our experiments, since the
non-differential random forest had to be mimicked by a substitute model.

Appendix 9 is a continuation to the TTA size ablation study conducted in Section 5.2 in the main paper. Here, we add the
same ”accuracy vs size” results for CIFAR-100 and SVHN.

Appendix 10 shows the mean L2 distortion for some attacks we used in the paper.

Lastly, Appendix 11 displays adversarial images generated by the adaptive white-box BPDA attack against our defense
method. We show that albeit BPDA can circumvent our defense for a vanilla DNN (w/o TRADES/VAT), its generated noise
can be observed by the naked eye.

2 Robustness on Resnet-50 and Resnet-101

Section 5 in the main paper shows adversarial robustness results only on Resnet-34. In this section we repeat the results also
for Resnet-50 and Resnet-101, shown in Table 1 and Table 2, respectively. We omit the black-box Boundary attack from
these experiments because it utilizes thousands of search queries, which is not practical for large DNN architectures. The
black-box Square attack is reported since it is fast and efficient.

Overall, the results on these DNNs have the same trend as in Resnet-34. ARF’s robustness is on par with TRADES and VAT,
however when combined with VAT we surpass the robustness of the vanilla adversarial trained DNN by a large margin. In
addition, contrary to TRADES, ARF exhibits very high normal accuracy.



Table 1: Comparison of accuracies (%) for various classifiers on CIFAR-10, CIFAR-100, SVHN, and Tiny ImageNet trained
on Resnet-50. All attacks are detailed in Section 4 in the main paper. We boldface the best results. Ensemble is presented
just as a reference as it has an unfair advantage.

Dataset Method Normal FGSM1 FGSM2 JSMA PGD1 PGD2 Deepfool CWL2 CWL∞ Square

CIFAR-10

Plain 94.80 59.12 40.00 76.24 8.16 0.00 3.44 0.08 16.00 51.08
Ensemble 95.92 78.04 53.00 86.48 79.84 22.00 93.56 85.92 79.48 86.20
TRADES 86.56 84.40 75.44 71.72 84.52 70.68 8.36 0.24 78.40 81.52

VAT 95.16 80.40 63.44 84.88 72.56 5.08 3.56 1.16 25.24 79.24
TTA 90.80 78.64 59.92 84.64 83.52 57.08 87.36 82.80 81.48 82.04
ARF 93.28 81.92 63.16 85.04 87.76 60.96 91.36 86.24 86.64 85.44

TRADES + ARF 84.16 82.20 75.96 78.64 82.00 74.60 67.48 67.16 80.16 80.20
VAT + ARF 93.24 89.36 77.64 90.76 90.48 78.36 89.84 88.00 87.32 88.80

CIFAR-100

Plain 74.52 26.48 11.08 47.64 16.52 0.08 9.44 8.08 36.56 24.52
Ensemble 78.44 53.60 23.08 56.72 64.48 32.64 76.88 53.84 62.40 60.36
TRADES 55.08 53.92 44.60 45.92 54.08 48.64 11.08 5.52 52.64 47.96

VAT 71.56 52.56 28.84 60.04 63.88 13.76 9.72 6.40 40.52 52.96
TTA 67.32 49.60 26.56 54.84 60.76 46.08 64.20 49.52 58.00 52.56
ARF 69.24 54.08 31.40 57.40 64.88 52.28 65.68 53.80 62.00 56.36

TRADES + ARF 50.68 49.80 45.20 47.04 49.32 46.64 46.56 34.60 50.20 47.84
VAT + ARF 67.28 62.72 48.84 65.60 65.36 59.88 64.24 56.16 61.92 62.40

SVHN

Plain 97.28 81.48 65.12 51.64 51.32 0.88 2.36 2.60 20.24 67.08
Ensemble 97.88 91.32 75.28 85.48 92.92 71.28 84.80 85.72 85.92 92.72
TRADES 93.72 92.92 89.76 52.36 92.00 77.76 4.24 0.40 89.08 84.44

VAT 96.52 87.96 80.92 84.88 48.28 0.20 2.24 0.36 9.36 81.68
TTA 97.24 89.32 75.04 86.08 91.76 63.92 83.44 86.08 84.52 93.00
ARF 97.16 89.68 76.72 87.40 92.48 67.44 84.28 86.56 86.36 92.72

TRADES + ARF 93.72 93.24 89.52 84.88 92.76 83.92 74.60 48.72 90.36 89.32
VAT + ARF 96.72 95.28 87.96 94.24 95.68 87.96 96.28 95.44 95.08 94.76

Tiny ImageNet

Plain 64.16 25.68 11.68 32.92 30.60 0.08 9.52 17.28 41.60 28.84
Ensemble 69.08 56.48 28.12 52.44 65.68 46.92 68.24 51.40 61.84 58.60
TRADES 45.60 45.12 33.92 37.60 44.68 41.12 10.48 6.36 43.84 42.08

VAT 63.24 53.64 40.96 56.64 23.92 0.52 9.76 18.12 54.28 41.12
TTA 51.88 36.88 19.08 40.16 43.36 30.20 45.92 33.08 42.80 38.44
ARF 54.00 41.00 22.64 43.44 47.84 35.56 49.40 37.36 45.56 43.96

TRADES + ARF 37.52 36.32 31.08 35.48 36.36 33.60 33.52 25.64 37.80 36.80
VAT + ARF 56.00 54.04 48.16 54.44 56.04 52.84 56.64 48.88 56.76 50.08
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Table 2: Comparison of accuracies (%) for various classifiers on CIFAR-10, CIFAR-100, SVHN, and Tiny ImageNet trained
on Resnet-101. All attacks are detailed in Section 4 in the main paper. We boldface the best results. Ensemble is presented
just as a reference as it has an unfair advantage.

Dataset Method Normal FGSM1 FGSM2 JSMA PGD1 PGD2 Deepfool CWL2 CWL∞ Square

CIFAR-10

Plain 94.96 58.08 44.12 77.92 9.04 0.00 3.60 1.32 24.24 56.32
Ensemble 96.24 78.76 55.56 87.48 77.52 14.36 93.52 83.08 81.16 87.60
TRADES 85.04 82.76 72.80 70.20 82.88 68.08 8.56 0.16 75.08 77.56

VAT 94.36 80.24 64.40 83.84 76.76 10.96 3.60 2.12 36.28 82.68
TTA 91.52 77.92 58.96 84.80 83.04 55.24 86.36 81.60 80.60 83.16
ARF 93.64 81.64 63.44 84.88 88.00 60.48 91.20 83.96 86.48 86.36

TRADES + ARF 82.12 81.00 75.24 77.24 81.16 74.04 66.00 67.12 78.88 79.00
VAT + ARF 93.40 88.92 76.52 90.60 89.76 76.36 88.88 85.48 87.84 89.00

CIFAR-100

Plain 75.56 33.20 17.56 53.44 16.72 0.12 9.40 13.52 46.92 27.64
Ensemble 79.56 60.48 29.84 59.52 69.64 42.60 78.12 54.96 72.00 63.72
TRADES 55.52 54.68 44.28 46.64 54.60 49.88 10.36 4.52 53.08 47.32

VAT 74.28 55.08 31.32 59.72 64.80 10.56 9.44 8.84 41.12 52.12
TTA 68.48 51.16 32.60 59.04 62.12 48.16 65.16 48.96 62.16 56.48
ARF 70.60 55.40 35.92 61.20 66.16 53.16 67.64 53.80 66.48 59.52

TRADES + ARF 50.88 49.76 44.72 46.32 49.40 45.88 43.68 35.00 49.68 46.96
VAT + ARF 70.52 65.16 48.72 66.12 67.48 60.36 66.56 56.84 62.92 64.52

SVHN

Plain 97.48 80.12 62.12 57.72 53.00 1.52 2.32 4.88 33.36 71.32
Ensemble 98.08 90.04 72.04 87.80 92.72 64.80 84.12 83.12 88.12 93.24
TRADES 93.52 93.12 89.32 38.88 92.40 74.12 4.60 0.68 87.92 83.60

VAT 94.64 89.60 86.24 75.72 71.20 12.64 3.32 12.64 56.32 78.72
TTA 97.16 87.92 71.00 86.56 90.36 54.92 80.60 81.92 85.36 93.36
ARF 97.24 88.80 71.72 87.60 91.08 61.56 82.68 82.32 86.28 93.68

TRADES + ARF 94.04 93.32 89.88 79.52 93.28 82.56 72.68 54.36 90.48 88.64
VAT + ARF 95.52 93.80 89.04 93.32 94.32 82.28 95.72 91.08 92.24 92.04

Tiny ImageNet

Plain 66.56 25.88 11.76 34.48 30.44 0.24 9.08 14.56 40.60 32.00
Ensemble 70.20 55.24 27.92 53.16 65.96 46.12 68.80 53.16 61.88 61.84
TRADES 45.28 43.88 35.72 37.80 44.36 40.92 10.96 5.04 44.20 41.64

VAT 64.40 43.96 23.84 53.24 48.92 4.68 10.16 26.80 51.84 46.44
TTA 54.84 39.08 19.52 43.48 46.00 29.96 49.96 34.84 44.76 42.92
ARF 57.12 41.80 22.16 45.80 50.72 35.04 51.28 37.76 47.68 46.52

TRADES + ARF 35.64 34.04 30.48 34.56 33.88 31.88 30.56 20.88 35.76 32.88
VAT + ARF 56.12 50.40 36.72 53.00 53.92 49.68 52.88 46.40 53.32 50.12



3 Test-time Augmentations

Here we detail all the transforms we used to generate our Test-Time Augmentations (TTAs) for our robust classification
methods, as described in Section 3.2 in the main paper. We used different parameters for soft transforms and hard transforms
in the ablation study in Section 5.2. Both sets of parameters are listed below. The main result in the paper, outside the
aforementioned ablation study, were calculated only with the hard set, which proved to achieve better performance in the
ablation study. We denote the original and transformed images as x and xt, respectively.

1. Rotation: Angle rotation of the image was randomized to U(−8◦, 8◦) for soft and U(−15◦, 15◦) for hard.

2. Translation: The image was allowed to shift horizontally and vertically up to 2 pixels in every direction for CIFAR-10,
CIFAR-100, and SVHN, and up to 4 pixels for Tiny ImageNet. This transform behaves similarly for both soft and hard.

3. Scale: We randomly selected a zoom in (s > 1) or a zoom out (s < 1). The image was scaled with s ∼ U(0.95, 1.05)
for soft and s ∼ U(0.9, 1.1) for hard.

4. Mirror: The image was horizontally flipped with a probability of 0.5. This transform was omitted for SVHN dataset, and
was the same for soft and hard.

5. Brightness: Randomly increase/decrease brightness. Let b denote the brightness factor; the transforms is defined as
xt = b · x. We randomized b ∼ U(0.8, 1.2) for soft and b ∼ U(0.6, 1.4) for hard.

6. Contrast: The contrast factor c was distributed as c ∼ U(0.85, 1.15) for soft and as c ∼ U(0.7, 1.3) for hard. The
transformed image after contrast is: xt = c · x+ (1− c) · E(xG) · 1nxnx3, where E(xG) is the mean pixel value on the
gray-scale equivalent image and 1nxnx3 is a matrix as the size of the original image, filled with ones. The gray-scale
image is defined as: xG = 0.2989 ·R+ 0.587 ·G+ 0.114 ·B where (R,G,B) are the red, green, and blue channels of
x, respectively.

7. Saturation: The saturation factor sat was distributed as sat ∼ U(0.75, 1.25) for soft and as sat ∼ U(0.5, 1.5) for hard.
It is defined as: xt = sat · x+ (1− sat) · xG.

8. Hue: The hue factor h was distributed as h ∼ U(0.03, 0.03) for soft and as h ∼ U(0.06, 0.06) for hard. The transform
updates the hue in the Hue Saturation Value (HSV) representation by h.

9. Gamma: Applying gamma transform on the image. Each channel (r,g,b) on x is transformed to xt[r, g, b] = x[r, g, b]γ ,
where γ ∼ U(0.85, 1.15) for soft and γ ∼ U(0.7, 1.3) for hard.

10. Blur: The blur transform convolutes the image with a 2D Gaussian kernel: xt = G2D(u, v;σb) ∗ x, where
G2D(u, v;σb) =

1
2πσ2

b
exp −(u2+v2)

2σ2
b

, where σb is uniformly distributed between 0.001 and a positive constant value
σbmax: σb ∼ U(0.001, σbmax).

We set σbmax = 0.25 for soft and σbmax = 0.5 for hard.

11. Noise: The Noise transform adds a white Gaussian noise to the image, xt = x+n, where n is sampled from n ∼ N(0, σ).
The standard deviation of the normal distribution is randomized in our algorithm to be σ ∼ U(0, σmax). We set
σmax = 0.005 in all our experiments (see Section 5.2 in the main paper).

It is important to point out that for all the color transforms, geometric transforms (except Mirror) and Noise, the mean value
of the transform change is zero, thus our generated TTAs are unbiased.

The transforms were carried out in the following order:

A) Applying all the color transforms ([5]-[9]). The order of the color transforms was randomized.

B) Padding the image with the last value at the edge of the image. CIFAR-10, CIFAR-100, and SVHN were padded to
64x64x3 and Tiny ImageNet was padded to 128x128x3.

C) Applying the random affine transform (transforms [1]-[3]).

D) Blurring the image ([10]).
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E) Croppong the center of the image.

F) Applying random horizontal flip (not for SVHN) ([4]).

G) Adding noise ([11]).

Some of our transforms were implemented using the TorchVision package of PyTorch [Paszke et al., 2019].

4 Hardware Setup

We trained our Deep Neural Networks (DNNs), Resnet-34, Resnet-50, and Resnet-101, with a GPU of type NVIDIA
GeForce RTX 2080 Ti. This GPU has 11 GB of VRAM. We used multi workers setup and utilized 4 threads of Intel Xeon
Silver 4114 CPU.

All the adversarial training with TRADES [Zhang et al., 2019] required more memory, therefore these DNNs were trained
on a different server using NVIDIA RTX A6000 GPU that has 48 GB of VRAM. For training with TRADES we used 4
threads of Intel Xeon Gold 5220R CPU.

All the attacks listed in Section 4 in the paper, including the adapted attacks, were carried out on a single NVIDIA GeForce
RTX 2080 Ti GPU. All the DNNs training, adversarial attacks, and evaluations were done using a single GPU.

The TTAs were generated on the CPU alone. After generated them, we fed them to the DNNs with a single forward pass (of
256 TTAs).

The random forest classifier was trained using 20 threads of Intel Xeon Silver 4114 CPU.

5 Adversarial Training

We trained some TRADES models for fewer train epochs since we observed this yields more robust classifiers. The normal
and adversarial accuracies on CIFAR-10, CIFAR-100, SVHN, and Tiny ImageNet trained on Resnet-34 using TRADES , is
shown in Table 3. The attacks listed in the table are PGD(L∞, ϵ = 0.01), PGD(L∞, ϵ = 0.031), and CW(L∞, ϵ = 0.031),
which are defined in Section 4 in the main paper, abbreviated to PGD1, PGD2, and CWL∞ , respectively. Based on these
results we trained all the adversarial robust TRADES DNN with 100, 100, 100, and 300 epochs for CIFAR-10, CIFAR-100,
SVHN, and Tiny ImageNet, respectively. The only exception was training Tiny ImageNet on Resnet-101 with TRADES
which was very time consuming, therefore we trained it only for 100 epochs instead of 300 epochs.

Table 3: Normal and adversarial accuracies (%) for adversarially robust DNNs trained with TRADES on Resnet-34, for
various number of epochs.

Dataset Epochs Normal PGD1 PGD2 CWL∞

CIFAR-10
100 86.68 85.12 71.88 78.28
200 87.08 84.00 67.96 74.36
300 86.92 84.28 68.92 75.12

CIFAR-100
100 53.36 52.88 46.44 51.04
200 53.00 52.00 47.28 50.20
300 53.00 52.32 47.16 50.04

SVHN 100 92.48 90.28 70.88 82.36
200 91.64 84.64 41.04 56.16

Tiny ImageNet
100 41.68 41.04 37.48 40.20
200 43.88 43.08 37.96 42.60
300 44.44 43.72 38.44 41.88

We trained the VAT models with the same number of epochs as the vanilla Resnets: 300, 300, 200, and 300 epochs for
CIFAR-10, CIFAR-100, SVHN, and Tiny ImageNet, respectively. Unlike TRADES, the VAT robustness did not degrade in
the late epochs, as shown in Table 4.

To optimize the VAT training, we set α = 1 as suggested in [Miyato et al., 2016], and experimented with different values of
ϵ, as listed in Table 5. Based on these results, we chose to optimize VAT for max robustness on PGD2 and thus selected ϵ=1,



Table 4: Normal and adversarial accuracies (%) for adversarially robust DNNs trained with VAT on Resnet-34, for various
number of epochs.

Dataset Epochs Normal PGD1 PGD2 CWL∞

CIFAR-10
100 93.04 81.12 15.00 34.32
200 94.00 81.60 19.44 49.68
300 94.00 82.12 20.08 49.80

CIFAR-100
100 66.88 58.48 12.12 34.24
200 70.84 62.12 14.96 42.44
300 70.92 63.00 15.20 44.36

SVHN 100 81.92 63.77 19.23 45.36
200 94.90 85.00 42.35 64.68

Tiny ImageNet
100 50.69 49.03 29.90 41.84
200 54.06 51.86 32.28 45.38
300 54.67 52.20 32.48 45.94

1, 3, 1 for CIFAR-10, CIFAR-100, SVHN, and Tiny ImageNet, respectively.

Table 5: Normal and adversarial accuracies (%) for adversarially robust DNNs trained with VAT on Resnet-34, for various
number of ϵ values, as defined in [Miyato et al., 2016].

Dataset ϵ Normal PGD1 PGD2 CWL∞

CIFAR-10

0.5 95.16 66.44 1.92 27.52
1 94.00 82.12 20.08 49.80
2 94.76 26.28 0.16 22.72
8 89.80 72.08 11.28 34.28

CIFAR-100

0.5 74.48 54.80 3.32 43.08
1 70.92 63.00 15.20 44.36
2 70.48 36.68 1.48 35.64
8 62.28 55.68 15.16 31.20

SVHN
0.5 95.65 82.70 18.35 44.87
1 95.19 53.17 5.95 77.18
3 94.90 85.00 42.35 64.68

Tiny ImageNet

0.5 57.82 53.51 17.71 42.32
1 54.67 52.20 32.48 45.94
2 58.11 38.50 1.40 42.39
8 53.67 47.58 7.30 43.01

6 Alternative Classifiers

Our ARF algorithm trains the random forest classifier using the TTA output logits (see Section 3.2 in the main paper).
Instead of training a random forest, we explored four alternative models: A simple (parametric-free) voting on the TTA
logits predictions, Logistic regression, linear SVM, and SVM with an RBF kernel. Since our datasets are multi class, we
set the classification strategy to be one-vs-rest for all the proposed parametric models. Table 6 shows results of normal
and adversarial accuracies on CIFAR-10, trained on Resnet-34, and attacked by all the non adaptive attacks described in
Section 4 in the main paper.

We observe that the random forest classifier achieves much better performance than voting and the linear classifiers, and
overall it is slightly better than SVM with RBF kernel. In addition, the ARF achieves the highest normal accuracy among all
the classifiers we tested. Since SVM with RBF has approximately the same computation run time as random forest, there is
no reason to favor it over random forest.
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Table 6: Normal and adversarial accuracies (%) on CIFAR-10 when training logistic regression or SVM compared to our
proposed random forest classifier.

Classifier Normal FGSM1 FGSM2 JSMA PGD1 PGD2 Deepfool CWL2 CWL∞ Square Boundary
Voting 91.76 82.48 68.60 84.88 87.08 73.32 83.40 82.32 81.76 85.64 88.40

Logistic regression 92.68 82.40 68.72 82.44 86.24 72.32 84.68 81.20 80.36 83.88 89.60
SVM (linear) 89.40 79.76 67.48 79.84 81.31 65.16 79.12 76.92 75.52 80.24 87.60
SVM (RBF) 93.52 83.52 69.76 84.68 89.76 78.16 87.36 84.80 85.28 87.08 91.60

Random forest 93.76 83.72 70.20 85.28 90.32 77.88 87.36 84.36 85.64 87.84 91.20

7 Transferability

We show that our ARF defense is characterized with excellent transferability, being able to generalize to new (unseen) attacks.
Table 7 compares between two different setups of fitting and testing ARF. The top row shows the accuracies we presented in
Table 1 in the main paper, where we train ARF on all the attacks (FGSM1, FGSM2, JSMA, PGD1, PGD2, Deepfool, CWL2 ,
CWL∞ , Square, and Boundary) with a global random forest model, obtained by fitting it on all the aforementioned attacks.
The second row shows ARF accuracy using the Leave-One-Out Cross-Validation (LOOCV) procedure, where we fit the
random forest on all the attacks except the attack we wish to test it on. For example, we calculate the adversarial accuracies
on images generated by FGSM1 and FGSM2 after fitting the random forest on images generated by JSMA, PGD1, PGD2,
Deepfool, CWL2 , CWL∞ , Square, and Boundary. Table 8 lists explicitly which attacks were used to fit the random forest for
each tested attack. Since this cross-validation method fits seven random forest models, the displayed normal accuracy is
their calculated mean and standard deviation.

Table 7: Normal and adversarial accuracies (%) on CIFAR-10 using different setups for fitting the random forest. The top
row is the case, where the random forest is fitted and tested on all the non adaptive attacks. The bottom row shows results for
the Leave-One-Out Cross-Validation (LOOCV) method, where the tested attack is excluded from the random forest fitting.

Random forest fitting Normal FGSM1 FGSM2 JSMA PGD1 PGD2 Deepfool CWL2
CWL∞ Square Boundary

Global 93.76 83.72 70.20 85.28 90.32 77.88 87.36 84.36 85.64 87.84 91.20
LOOCV 93.71 ± 0.07 83.48 69.48 84.92 90.16 78.16 87.32 84.92 85.24 87.92 91.60

Table 8: Each row displays which attacks were employed to fit the random forest on the tested attack using the LOOCV
procedure.

Tested attack FGSM1 FGSM2 JSMA PGD1 PGD2 Deepfool CWL2
CWL∞ Square Boundary

FGSM1 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
FGSM2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
JSMA ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
PGD1 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
PGD2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Deepfool ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
CWL2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
CWL∞ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Square ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Boundary ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓



8 BPDA Attack

In the white-box settings, we utilized the Backward Pass Differentiable Approximation (BPDA) attack in
[Athalye et al., 2018a]. More specifically, we employed the generalized BPDA and replaced the non-differential random for-
est model with a substitute model that can derive gradients. To that end we used knowledge distillation [Hinton et al., 2015]
to train a substitute MLP to mimic the random forest functionality. We used a six layer MLP with the following dimensions:

• For CIFAR-10 and SVHN: N · C → N · C → N ·C
2 → N ·C

4 → N ·C
8 → N ·C

16 → C.

• For CIFAR-100 and Tiny ImageNet: N · C → N ·C
10 → N ·C

20 → N ·C
40 → N ·C

80 → N ·C
160 → C.

N and C are the TTA size and the number of classes in the dataset, respectively. Since CIFAR-100 and Tiny-ImageNet have
higher number of logits, we shrink their layer size in the MLP faster to limit the number of parameters.

After each linear layer we used a batch normalization layer and Relu activation (in this order), except for the last layer.
We trained this MLP with TTA logits obtained solely from the test set (used for fitting the random forest), and kept the
test-val hidden. We train this MLP using the KL divergence loss; we did not add the cross entropy loss (with the ground
truth label) to the training since our goal is to mimic the random forest gradients with the highest fidelity, and not to improve
classification accuracy.

After the MLP was trained, we used the BPDA attack on the hybrid model encapsulating the original DNN and the
substituted MLP, connected in tandem. All our robustness results, including on the BPDA attack, show accuracy calculated
for adversarial imaged generated from the test-val set. It should be emphasized that the above hybrid model (DNN+MLP)
was only used to generate the adversarial images. For evaluating robustness we pass these images to the ARF model (DNN
with random forest).

The EoT attack [Athalye et al., 2018b] was not used in our experiments because this attack requires a white-box threat
model with differential loss. Thus, we could not differentiate the expected value of a loss at the output of the random
forest, over our TTA transform distribution. In any rate, we showed in the paper that the transformations alone do not
provide protection against adaptive white-box attacks, since our A-PGD attack greatly attenuates the ARF robustness (see
Section 5.3 in the main paper).

9 TTA Size Ablation

Here we repeat the TTA size ablation test in Section 5.2 in the main paper for CIFAR-100 and SVHN datasets. We plot the
adversarial accuracies for PGD1, Deepfool, and CWL2

in a logarithmic scale (Figure 1), and show that N = 256 TTAs are
sufficient also for these datasets.

Figure 1: Ablation study on the number of generated TTAs (N ). We calculate the adversarial accuracies on CIFAR-100 and
SVHN for three attacks as a function of N (logarithmic scale).
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10 L2 Distortion

Table 9 reports the mean L2 distortion of the adversarial images, generated by Deepfool (gray-box), CWL2
(gray-box), A-

PGD (adaptive gray-box), Boundary (black-box), and BPDA (white-box) attacks. The L2 distortion of an adversarial image
x′ from the natural image x is defined by dL2

(x, x′) = ||x− x′||2. In our average distortion calculation we consider only
adversarial images that fooled the defense, meaning, the DNN classified x correctly but the defense method misclassified x′.

This measure is interesting because high L2 distortion value correlates to perceptible noises on the images, thus invalidates
the attack since humans can easily notice it. The above is relevant especially for the unbounded attacks, Deepfool, CWL2

,
and Boundary (in our experiments), which are not constrained by the L2 norm. We observe that in the majority of cases, the
highest mean L2 distortion was obtained by using TRADES, either alone or combined with ARF.

Table 9: Mean L2 distortion values for adversarial images generated by selected attacks, on a vanilla Resnet34 (Plain),
adversarially trained Resnet34 (TRADES/VAT), our ARF defense, and a combination of TRADES/VAT with our ARF.

Dataset Attack Plain TRADES VAT ARF TRADES+ VAT+
ARF ARF

CIFAR-10

Deepfool 0.58 1.48 1.46 0.30 1.08 0.56
CWL2

0.80 1.99 1.67 2.31 1.98 2.79
Boundary 0.25 1.47 0.89 0.11 1.37 0.68
A-PGD 1.36 1.60 1.52 1.35 1.61 1.52
BPDA 1.27 1.36 1.36 1.27 1.38 1.36

CIFAR-100

Deepfool 0.20 0.85 0.54 0.07 0.50 0.20
CWL2 1.67 2.92 1.89 2.51 3.01 2.31

Boundary 0.41 2.29 1.07 0.25 1.99 0.77
A-PGD 1.40 1.61 1.54 1.40 1.61 1.54
BPDA 1.24 1.41 1.36 1.24 1.39 1.34

SVHN

Deepfool 1.29 1.07 0.94 1.18 1.09 0.51
CWL2

1.10 1.37 1.52 2.50 1.32 2.01
Boundary 0.43 0.97 1.18 0.16 0.61 0.63
A-PGD 1.35 1.57 1.46 1.34 1.54 1.47
BPDA 1.22 1.36 1.31 1.21 1.36 1.32

Tiny ImageNet

Deepfool 0.40 1.39 1.22 0.20 0.81 0.73
CWL2

2.19 5.22 4.80 2.39 4.23 4.75
Boundary 1.49 7.22 5.34 1.03 2.65 3.07
A-PGD 2.86 3.19 3.18 2.87 3.20 3.17
BPDA 2.44 2.80 2.86 2.44 2.82 2.83

11 Visual Perceptibility

In Section 5.3 in the main paper, we have shown that our ARF defense is susceptible to the BPDA attack, an adaptive
white-box attack that was customly tailored to circumvent our specific random forest classifier. We turn now to show that this
attack fails to generate imperceptible images. We display some images generated using BPDA against ARF and demonstrate
that a human observer can easily detect an unusual distortion in them.

Figure 4 in the main paper (also presented here as Figure 2 for convinience) exhibits clean images and adversarial images
generated by BPDA for CIFAR-10, CIFAR-100, SVHN, and Tiny ImageNet. ”Clean” column corresponds to natural
(undistorted) images; ”ARF” column denotes images that fool our ARF defense; ”TRADES+ARF” and ”VAT+ARF”
columns display images that fool our ARF defense when combined with TRADES and VAT adversarially trained DNNs,
respectively. For a fair comparison, we show only images that successfully fool all the three defenses, meaning, the DNN
classified the clean image successfully but the adversarial image was able to flip the label despite our random forest classifier.

We note that the most visible noises correspond to attacks on the vanilla ARF method, without incorporating TRADES/VAT
into it. This observation is counterintuitive to the reported accuracies in Section 5.3 in the main paper that show better
robustness of ARF when combined with TRADES/VAT. In addition, Section 10 exhibits lower L2 distortion for the vanilla
ARF defense on the BPDA compared to TRADES+ARF and VAT+ARF. Nonetheless, these visible distortions decrease the



efficacy of BPDA towards our defense. It also shows that although ARF when used alone gets lower quantitative results,
qualitatively it has an advantage over the other methods as the examples that overcome it can be easily spotted by a naked
eye.

Figure 2: Adversarial images generated by BPDA circumventing our ARF defense. TRADES+ARF and VAT+ARF
correspond to our ARF defense when applied on top of an adversarially trained DNN, TRADES/VAT, respectively.
Adversarial images that fool our ARF defense can be easily spotted by the naked eye.
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