
Appendix
A. Dataset Description

This paper presents a comprehensive evaluation of our
ViT models on 10 different image datasets, comprising
prominent computer vision benchmarks such as ImageNet-
1K [12] (IN-1K), CIFAR-10 and CIFAR-100 [25], Oxford
Flowers102 [37], and SVHN [36]. In addition, we include
three datasets namely ClipArt, Infograph, and Sketch from
DomainNet [41], a widely adopted benchmark for domain
adaptation tasks. Moreover, we explore the performance
of our approach on two medical image domain datasets:
Chaoyang [63] and PneumoniaMNIST [60]. The dataset
size, sample resolution, and the number of classes are fur-
ther elaborated in Table 9. Note that the accuracies reported
for CIFAR in Figure 1 of the main paper is an average of
the classification accuracy of CIFAR-10 and CIFAR-100.

Table 9. Details of image classification datasets (sample size, res-
olution, and number of classes) evaluated in our experiments.

Dataset Train Size Test Size Dimensions # Classes

CIFAR-10 50,000 10,000 32×32 10
CIFAR-100 50,000 10,000 32×32 100
Flowers102 2,040 6,149 224×224 102
SVHN 73,257 26,032 32×32 10

ImageNet-1K 1,281,167 100,000 224×224 1000

ClipArt 33,525 14,604
Infograph 36,023 15,582 224×224 345
Sketch 50,416 21,850

Chaoyang 4,021 2,139 512×512 4
PMNIST 5,232 624 28×28 2

Table 10. Ablation of decoder depth.

Decoder
Depth

Accuracy

CIFAR-10 CIFAR-100

1 91.59 68.41
2 91.65 69.64
4 90.88 67.46
8 90.59 67.78

12 91.08 66.94

B. Training Configurations
We follow the configurations introduced in MAE [20]. A

comprehensive set of training configurations for all datasets
used in this study is provided in Table 14 for reference. Dur-
ing training two parameters, image and patch sizes vary
depending upon the datasets and the rest of the parameters
are the same across all the datasets.

Table 11. Ablation of decoder embedding dimension.

Decoder
Dimension

Accuracy

CIFAR-10 CIFAR-100

64 89.20 67.11
128 91.65 69.64
256 91.64 66.98
512 90.53 66.19

Table 12. Ablation of Decoder Heads.

Decoder
Heads

Accuracy

CIFAR-10 CIFAR-100

1 91.54 69.44
2 92.44 69.28
4 92.49 68.59
8 92.09 69.52

16 91.65 69.64

Table 13. Statistics of video datasets generated by different ma-
nipulating techniques available in Faceforensics++

Split DeepFake Face2Face FaceSwap NeuralTextures Original Total

Train 720 720 720 720 720 3600
Val 140 140 140 140 140 700
Test 140 140 140 140 140 700

Total 1000 1000 1000 1000 1000 5000

Swin and ConvMAE training configurations: We
have adopted the training pipeline from [31] and [16] for
Swin [34] and ConvMAE [16] respectively. For each of
them, we have combined their reconstruction based self-
supervised learning (SSL) and fine-tuning in a joint learn-
ing framework, keeping the training configurations same.
Note that UM-MAE [31] with its secondary masking strat-
egy, is an efficient version of SimMIM [59] allowing the
reconstruction based SSL in hierarchical transformers like
Swin [34] and PVT [54].

C. ViT Decoder for Reconstruction based SSL
In contrast to MAE [20], this paper employs a

reconstruction-based SSL approach with class-wise super-
vision. Consequently, we explore the effect of different de-
sign choices of the ViT decoder, which can impact the SSL
training while simultaneously optimizing cross-entropy in
Self-supervised Auxiliary Task (SSAT). To this end, we
conduct experiments that involve modifying three decoder
attributes: depth, dimension, and attention heads. We
evaluate the resulting impact on the model’s top-1 accuracy
using two datasets: CIFAR-10 and CIFAR-100.

Decoder Depth: In this study, we investigated the im-



pact of decoder depth on model performance, as shown in
Table 10. During the experiments, we maintained a fixed
decoder dimension of 128, decoder heads of 16, and a value
of λ equal to 0.1. Our findings demonstrate that the optimal
results for both datasets were obtained at a decoder depth of
2.

Decoder Embedding Dimension: This section inves-
tigates the influence of the decoder embedding dimensions
on model performance, as presented in Table 11. Through-
out these experiments, we maintained a constant value of
λ at 0.1, a decoder depth of 2, and 16 decoder heads. Our
results indicate that the optimal performance was achieved
with a decoder dimension of 128.

Decoder Heads: Table 12 presents the outcomes of
the ablation study performed to evaluate the impact of the
number of heads on the ViT’s performance. The hyper-
parameters, namely λ = 0.1, decoder depth = 2, and
decoder dimension = 128, are fixed to their optimal val-
ues from the prior experiments. The experimental findings
indicate that retaining 4 heads for CIFAR-10 and 8 heads
for CIFAR-100 resulted in the highest performance levels.
To ensure generalizability across our experiments, we fixed
the number of decoder heads to 16.

D. Details of deepfake detection experiments
In this section, we elaborate the cross-training manipula-

tion and zero-shot transfer experimental details for deepfake
detection.

D.1. Datasets

We employ two publicly available popular dataset on
Deepfakes.

FaceForensics++: The FaceForensics++ dataset [44] is
a large-scale benchmark dataset for face manipulation de-
tection, which is created to help develop automated tools
that can detect deepfakes and other forms of facial manipu-
lation. The dataset consists of more than 1,000 high-quality
videos with a total of over 500,000 frames, which were gen-
erated using various manipulation techniques such as facial
reenactment, face swapping, and deepfake generation.

The videos in the dataset are divided into four cate-
gories, each corresponding to a different manipulation tech-
nique: Deepfakes, Face2Face, FaceSwap, and NeuralTex-
tures. Deepfakes use machine learning algorithms to gen-
erate realistic-looking fake videos, while Face2Face and
FaceSwap involve manipulating the facial expressions and
identity of a person in a video. NeuralTextures uses a dif-
ferent approach by altering the texture of a face to make it
appear different. The dataset includes both real and manip-
ulated videos, with each manipulation technique applied to
multiple individuals. The statistics of different manipulat-
ing techniques available in faceforensics++ is provided in
Table 13.

DFDC: The Deepfake Detection Challenge (DFDC)
dataset [46] is a large-scale benchmark dataset for deepfake
detection. The dataset consists of more than 100,000 videos
generated using various facial modification algorithms. The
DFDC dataset consists of two versions: a preview dataset
with 5k videos featuring two facial modification algorithms
and a full dataset with 124k videos featuring eight facial
modification algorithms. The DFDC dataset is the largest
currently and publicly available face swap video dataset,
with around 120,000 total clips sourced from 3,426 paid
actors. The videos are produced using several Deepfake,
GAN-based, and non-learning methods. The official DFDC
train, validation and test splits are also designed to simulate
real-world performance, with the validation set consisting
of a manipulation technique not present in the train set, and
the test set containing much more challenging augmenta-
tions and perturbations.

D.2. Methodology

VideoMAE [51]: VideoMAE is a self-supervised video
pre-training method that extends masked autoencoders
(MAE) to videos. VideoMAE performs the task of masked
video modelling for video pre-training. It employs an ex-
tremely high masking ratio (90%-95%) and tube mask-
ing strategy to create a challenging task for self-supervised
video pre-training. The temporally redundant video content
enables a higher masking ratio than that of images. This
is partially ascribed to the challenging task of video recon-
struction to enforce high-level structure learning.

SSAT: In this experiment, we use the same backbone as
in the original work [51] and we use rigorous augmentations
as used by the winners of the DFDC Challenge [46] in our
experimental setting. For training VideoMAE along with
SSAT on DFDC, we extend our image based framework to
videos (as illustrated in Figure 11) and jointly optimize the
primary deepfake classification loss Lcls and the auxiliary
video reconstruction loss LSSAT as

L = λ ∗ Lcls + (1− λ) ∗ LSSAT (2)

where λ = 0.1 is the loss scaling factor.

D.3. Implementation details

While training VideoMAE+SSAT models follow the
training recipe of [51], we have incorporated specific mod-
ifications tailored for deepfake detection.

Fake class weight: Assigns weight w to the class rep-
resenting fake in the weighted cross entropy loss. This was
used since the training set is very imbalanced (82% fake -
18% real).

LCE = −(wtreal log preal + (1−w)tfake log pfake) (3)



Figure 11. Mask Autoencoder as a Self Supervised Auxiliary Task for deepfake detection.

Equation 3: Weighted Cross-Entropy Loss. w is the weight
of the real class while preal and pfake are the predicted
probabilities, and treal and tfake are the ground truth in-
dicator variables.

Augmentations: The choice of augmentations has a pro-
found impact on validation performance. The set of aug-
mentations that work best are Image Compression, Gaus-
sian Noise, Gaussian Blur, Horizontal Flip, Brightness Con-
trast, FancyPCA, Hue Saturation, Greyscale and shift-scale-
rotate, all available in the Albumentations library [3] and
used in the DFDC challenge’s winning solution by Selim
Seferbekov [46]. Other augmentations like Reversal, Ran-
dom up / down sampling and heavy Gaussian Noise seem
to have a detrimental effect, possibly because they do not
generalize to the validation set. Meanwhile, having no aug-
mentations also decreases the generalizability.

Testing: During testing, predictions are obtained by av-
eraging the results from all 16-frame segments across the
entire video.

E. Attention Visualization
In Figure 12, we illustrate attention visualization for a

few sample images drawn from the Flower and ImageNet
datasets. Our analysis of the visualization highlights that the
ViT trained with SSAT generates attention maps that em-
phasize the primary object class to a greater extent than the
attention maps computed by ViTs trained from scratch and
trained with SSL+FT. These findings indicate that the ViT
trained with SSAT exhibits higher efficacy in image classi-
fication.



Figure 12. Attention visualization of six images, three from the Oxford Flowers-102 dataset (top 3 rows) and three from the ImageNet
dataset (bottom 3 rows). The attention heatmaps in the second, third, and fourth columns correspond to models trained from scratch using
ViT, models trained using SSL+FT, and models trained using SSAT, respectively.



Table 14. Our ViT training settings across different datasets.

Input Size

PMNIST
∣∣∣ 28×28

CIFAR10, CIFAR100, SVHN
∣∣∣ 32×32

Flowers, ImageNet-1K
ClipArt, Infograph, Sketch

∣∣∣ 224×224

Chaoyang
∣∣∣ 512×512

Patch Size

PMNIST, CIFAR10,
CIFAR100, SVHN

∣∣∣ 2×2

Flowers, ImageNet-1K
ClipArt, Infograph, Sketch

∣∣∣ 16×16

Chaoyang
∣∣∣ 32×32

Batch Size 64

Optimizer AdamW
Optimizer Epsilon 1e-08
Momentum β1 = 0.9, β2 = 0.999
layer-wise lr decay 0.75
Weight Decay 0.05
Gradient Clip None

Learning Rate Schedule Cosine
Learning Rate 1e-03
Warmup LR 1e-06
Min LR 1e-6
Epochs 100
Warmup Epochs 5
Decay Rate 0.05
Drop Path 0.01
Lambda (λ) 0.1
Masking Ratio 0.75

Random Resized Crop Scale, Ratio (0.08, 1.0), (0.75, 1.3333)
Interpolation bicubic
Random Horizontal Flip Probability 0.5
Rand Augment n = 2
Random Erasing Probability, Mode and Count 0.25, Pixel, (1, 1)
Color Jittering None
Auto-augmentation rand-m9-mstd0.5-inc1
Mixup True
Cutmix False
Mixup, Cutmix Probability 1, 0
Mixup Switch Probability 0.5
Mixup Mode Batch
Label Smoothing 0.1


	. Dataset Description
	. Training Configurations
	. ViT Decoder for Reconstruction based SSL
	. Details of deepfake detection experiments
	. Datasets
	. Methodology
	. Implementation details

	. Attention Visualization

