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This supplementary material contains additional material
to support the main paper. This material is presented in the
following sections:

1. Section 1 covers additional details of our RGBT-Dog
model including the shape and texture PCA spaces.

2. Section 2 covers additional details for generating data
and some additional data examples.

3. Section 3 covers some additional material regarding
our experiments utilising our synthetic labels in the
main paper including training details and model archi-
tectures.

4. Section 4 covers additional results from our experi-
ments including the full tables.

5. Section 5 covers some additional results from applying
models trained with our data to other animals.

Some material is repeated from the main paper for the
readers convenience.

1. Additional RGBT-Dog model details
Details of shape parameters. Like many parametric
models we utilise a PCA shape space to build meshes, this
parameter governs the actual shape of the mesh not the way
the mesh is posed; in other words this parameter governs
the non posed appearance of the mesh. As in Kearney et
al. [5] we build a PCA shape space from photogrammetry
scans of 11 dogs in a similar manner to [5]. The body shape
is defined by a vector of size R3N (where N = 2426) ver-
tices like in SMAL/SMPL. To build our PCA shape space
we fist normalise the poses as was done in SMPL [8] to en-
sure all these dog shapes have the same poses. It should be
noted that these scans were cleaned by a digital artist to re-
move any artefacts from the scanning process. Using these
scans we can employ principal components analysis over
the meshes, allowing us to build a mean shape, V and eigen-
vectors EV = [eV1 , · · · , eV10 ], the first 10 principal compo-
nents (i.e. the orthonormal shape displacements) each of

size 2426 × 3. Thus our PCA shape model can be sum-
marised as {V ,EV }. Given this PCA space we can gen-
erate a new shape for the dog mesh via V ′ = EV β + V
producing a new body shape V ′ ∈ R2426×3 of a dog in the
normalised (i.e. standardised) pose.

Details of texture parameters. Our PCA texture space
is generated from the 12 UV scans (Fig. 1). Each texture
map is originally represented as a multi-dimensional array:
{Ti}12i=1 ⊂ Rf×d×d×d×3 where f = 4, 848 is the number
of mesh faces and d = 4 is the resolution of the texture,
and we convert it to a vector of size f × d × d × d × 3.
Each element of Ti is normalized into the range [0, 1].
Applying PCA to {Ti}, we obtain the eigenvector matrix
E = {e1, . . . , e12}⊤ with normalized eigenvectors {ei}12i=1

of the covariance matrix of {Ti}. Given this model, a new
texture T ′ can be generated using the first 11 principal com-
ponents of E by

T ′ = τ(Eψ + T ) (1)

where T is the mean texture, ψ is a randomly sampled vec-
tor, and τ is a threshold operator confining the outputs to
be in the range [0, 1]. Some of the principal components of
our PCA shape space can be seen visualised on the left of
Fig. 2.
Details of RGBT-Dog: Our RGBT-Dog model, M , uses
standard vertex-based linear blend skinning to generate a
mesh m with N = 2, 426 vertices and K = 43 joints: A
mesh is defined by a function Q(β, ψ, θ, r, t,W )

m = Q(β, ψ, θ, r, t,W ). (2)

with shape β ∈ R10 and textureψ ∈ R11 parameters used to
explore the respective PCA spaces generating mesh shapes
and texture. θ ∈ R43×3 are the pose parameters presented in
Euler axis angle. Unlike in SMPL-X we do not include the
root rotation in the pose: root rotation r ∈ R3 and trans-
lation t ∈ R3 are used to determine dogs’ position and
orientation in 3D space. This setting enables us to avoid
providing these parameters for the camera. Blend weights
W ∈ RN×K are used with a standard linear blend skinning
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Figure 1. Dog textures as UV maps produced from cleaned photogrammetary scans

Figure 2. Left: First four principal components of the texture PCA space, displayed on a generic dog mesh. The mean texture is in the
middle, with the red, green, blue and grey arrows representing the first, second, third and fourth components respectively. Each component
shows ±2 standard deviations. Right: Motion from [5] applied to the dog with mean texture.

function to skin the mesh via the deformed vertices. This
mesh is then placed in 3D space using the root rotation r
and translation t. Finally, the texture map generated from
our texture parameter ψ is applied to the canine mesh creat-
ing the final textured, articulated canine mesh m.

Below we describe the mesh creation process in greater
detail with regards to the effect of the shape, pose and tex-
ture parameters.

Shape blend shaping: We start with a template body
shape in the ’rest’ pose, a canine equivalent of the T-pose
for human body models. This template shape, V ∈ R3N

is the average of the shapes for our photogrammetry scans,
i.e. the average of the meshes. Using our shape PCA space
EV ∈ R2426×3×10 we can generate a new shape V ′. We
do this by multiplying our shape parameter β ∈ R10 with
the eigenvectors for the PCA space EV to create vertex dis-
placements EV β ∈ R2426×3 which we add to the mean
shape V resulting in a new set of verticies V ′ ∈ R2426×3.
This linear blend shaping process is summarised in Eq. (3).

V ′ = EV β + V (3)

Joint locations: Next we obtain the 3D locations of the
joints of the canine models skeleton from the displaced ver-

tices V ′. This is because, much like in SMPL, different
canine shapes have different joint locations; to avoid arti-
facts when the mesh model is posed we require accurate
3D locations of the joints in the rest pose. To accomplish
this a sparse joint regressor matrix J ∈ R43×2426 which
regresses initial 3D joint locations for this altered mesh
jn ∈ R43×3 = JV ′ as the weighted average of the neigh-
bouring vertices. An illustration of the joint regressor is
shown in Fig. 3 where the 3D joints of a canine mesh are
determined from the vertices of the mesh.

Applying pose: We apply pose in a simplified man-
ner compared to SMPL/SMPL-X. In such work the use of
pose blend shapes are used to represent muscle based de-
formations whenever any joints are rotated. The final joint
positions are obtained from applying a joint regressor to the
posed vertices with pose blend shapes (after posing). How-
ever this can lead to inconsistencies between the joint loca-
tions obtained from the regressor and those obtained from
the pose parameter via forward kinematics. As a motive of
our model is the creation of data for training machine learn-
ing models, we employ a simplified version for RGBT-Dog
where no pose blend shapes are used to ensure consistency
between the joints obtained from the regressor (see below)



Figure 3. An illustration of the skeleton and joint regressor J for
RGBT-Dog. Due to the orientation of the mesh, some keypoints
are less visible than others.

and those from the pose parameter via forward kinematics.
We have the joints of the shaped mesh in neutral pose,

jn as discussed above. Using the pose parameter, θ, we can
use forward kinematics to calculate the joint positions in the
new pose, K3D from the neutral pose joints, jn. From this
operation we also obtain the relative global transformation
of each joint in the form, A ∈ R43×4×4. From this and a set
of skinning weights, W ∈ R2426×43 and the use of the gen-
eralised matrix product, we obtain the final vertex transfor-
mation for each vertex, G ∈ R2426×4×4. These are used to
shape the vertices of the mesh with respect to the locations
of the joints determined by the pose parameter, θ as neigh-
bouring vertices are influenced differently by the same joint
transformation. G is then applied to V ′ in a homogeneous
transformation to create the final mesh m = G · V h, where
V h ∈ R2426×4 is the homogeneous form of V ′, taking the
in-homogeneous form to obtain the mesh m ∈ R2426×3.
We then use our root translation parameter, t to alter the 3D
global position of the mesh and associated keypoints. This
is simply accomplished via

m = m+ t (4)
K3D = K3D + t (5)

This produces our mesh m however it is not yet tex-
tured. We can produce a new texture, T ′ using our texture
PCA space comprised of a mean texture T and eigenvectors
ET . We can then apply this texture to our mesh m using
generic mapping functions creating a textured, posed artic-
ulated mesh m. This entire process is, mathematically sum-
marised by Eq. (2) for readers convenience as in the main
paper, where m ∈ R2426×3 is the canine mesh and M is the
RGBT-Dog model.

This mesh can then be rendered to obtain the image, I ,
silhouette map, S (by providing a completely white texture

Figure 4. Left: Texture map for part-segmentation. Right: A ren-
dered dog mesh, textured with the part-segmentation texture map.

map and rendering on a black background) and the 2D key-
points, K2D, in addition to K3D. However we still need to
generate the part-segmentation map.

1.1. Part-segmentation map generation details

In this section we provide additional details on the con-
struction of the part-segmentation maps for the data. We
take the mesh m and apply a part-segmentation texture map
where each coordinate in the map (visualised in the left of
Fig. 4) corresponds to a face on the mesh. The applica-
tion of this texture map to a mesh can be seen in Fig. 4.
This textured mesh can then be rendered to create our part-
segmentation map. It should be noted that the maps for the
Synth images and PGT images differ slightly: the maps for
synthetic images contain labels for the eyes which we can
see on the right of Fig. 4. These labels are absent on the syn-
thetic part-segmentation maps obtained from fitting to real
images (i.e. the PGT part-segmentation maps); this is be-
cause it is difficult to obtain an accurate fit for these labels as
there are no eye keypoints provided in [2] and indeed there
are no such keypoints provided by RGBT-Dog. As such we
would have difficulty obtaining accurate labels for our PGT
maps and thus the eye label is overwritten with the head la-
bel in the UV map which is then applied to the mesh. As a
result, our PGT maps are made up of 25 labels as opposed
to the Synth data’s 26 (as Synth does not have an unknown
label): As noted in the main paper, for the purposes of train-
ing our convolutional neural network based models, the eye
labels for our Synth data part-segmentation maps are over-
written with the head label to create parity between the two
datasets during training.

It should also be noted that in our generation of the seg-
mentation maps during the fitting for the PGT images we
take advantage of the ground truth silhouette maps provided
by [2] in order to make the most accurate maps possible. To
do this we utilise the ground truth data (keypoints and sil-
houettes) provided by Biggs et al. [2]. RGBT-Dog produces
an initial rendered part-segmentation map. For this map, if a
ground truth key point for a body part is unlabelled we pro-



Figure 5. Part-segmentation map refinement process. From left to
right, starting at top left: (1) The RGB image of [2] with ground
truth keypoints annotated, (2) the corresponding silhouette map,
(3) the original part-segmentation map produced by RGBT-Dog,
(4) if a joint is not labelled the corresponding body part is given
the unknown label, (5) add back in the ground truth silhouette, (6)
remaining pixels at the border of the silhouette filled in based on
the value of its nearest valid neighbour creating the final map.

vide a white label, the unknown label to the corresponding
body part as we cannot be sure of this body part in an auto-
mated procedure. We can then refine this part-segmentation
map using the ground truth silhouette map provided by [2].
This is done via adding the rendered part-segmentation map
back to the silhouette then filling in the remaining silhouette
with the value of its nearest neighbouring pixels. This pro-
cess is visualised in Figs. 5 to 7.

2. Additional data examples

In this section we provide additional examples of our
Synth and PGT datasets. As in the main paper we present
the 2D keypoints and part-segmentation maps for both the
PGT data and Synth data. The PGT examples can be found
in Figs. 8 to 10; in these instances we can clearly see in-
stances of the unknown (white) label. In Figs. 11 to 13 we

Figure 6. Part-segmentation map refinement process. From left to
right, starting at top left: (1) The RGB image of [2] with ground
truth keypoints annotated, (2) the corresponding silhouette map,
(3) the original part-segmentation map produced by RGBT-Dog,
(4) if a joint is not labelled the corresponding body part is given
the unknown label, (5) add back in the ground truth silhouette, (6)
remaining pixels at the border of the silhouette filled in based on
the value of its nearest valid neighbour creating the final map.

provide examples from Synth. As can be seen in these two
sets of figures, the Synth dataset contains eyes labels as note
above but these are absent for PGT data. We can also see
many instances of the unknown label in Figs. 8 to 10.

3. Experiment details

In this section we present some additional details regard-
ing the models and training procedures used to validate the
data we have created for canine body analysis. Some mate-
rial is repeated from the main paper for the readers conve-
nience.

We use the stacked hourglass model [9] for 2D pose es-
timation and part-segmentation. For training the keypoint
estimation models, we employ the mean squared error be-
tween the predicted keypoint heatmaps and the ground-truth
heatmaps as in [9] and other papers where heatmaps have



Figure 7. Part-segmentation map refinement process. From left to
right, starting at top left: (1) The RGB image of [2] with ground
truth keypoints annotated, (2) the corresponding silhouette map,
(3) the original part-segmentation map produced by RGBT-Dog,
(4) if a joint is not labelled the corresponding body part is given
the unknown label, (5) add back in the ground truth silhouette, (6)
remaining pixels at the border of the silhouette filled in based on
the value of its nearest valid neighbour creating the final map.

been used (e.g. [10]. For the part-segmentation, the soft-
max cross-entropy between the ground-truth and predicted
segmentation maps was used. For part-segmentation, we as-
signed a weight of zero to the ’unknown’1 label in their loss
evaluation to prevent our model from learning the unknown
label.

For both tasks, across all datasets we trained for five
epochs with a batch size of ten and a learning rate of 0.001.
For data augmentation, we employed random horizontal
and vertical flipping, Gaussian blur, hue saturation and ran-
dom noise using ImgAug [4].

Regarding part-segmentation, the Synth maps possess la-
bels for the eyes (as can be seen in the rendered mesh of
Fig. 4) whereas the maps for the PGT do not. In order to
enforce parity with respect to the number of data labels we

1See above for details regarding this label

Figure 8. Examples of our PGT data: Top, RGB images with 2D
pose overlaid. Bottom, corresponding Part-segmentation map.

fold the eye labels of the Synth dataset into the head label
during the data loading (i.e. these three parts are given the
same label) as mentioned above. This results in the maps
seen in Figs. 11 to 13.

4. Additional results for dogs

In this section, we present the full versions of the results
tables found in the main paper.

4.1. Pose estimation

Our full pose estimation results can be found in Tab. 1;
this table allows us to analyse the results at a lower level as
we can compare individual joints. As is to be expected, our
results for Synth under-perform compared to Mixed/PGT
especially for poorer performing keypoints such as Tail
End. As is to be expected keypoints that are often unob-
scured such as the head, nose and neck keypoints show sig-
nificantly better results compared to more easily obscured



Figure 9. Examples of our PGT data: Top, RGB images with 2D
pose overlaid. Bottom, corresponding Part-segmentation map.

keypoints such as those of the tail or upper limbs. Poten-
tially performance for more easily obscured limbs could be
improved through the use of loss weightings.

We provide some additional visualisations of our results
in Figs. 14 and 15. As we noted in the main paper and high-
lighted by Tab. 1, our trained models notably struggle with
the tail and ear keypoints. This is to be expected to some
degree, such points possess far greater degrees of freedom
compared to other points. Figures 14 and 15 also illustrate
another notable feature of our results: occlusion of limbs.
As shown, limb keypoints can be easily mistaken for one
another by the trained model resulting in incorrect predic-
tions particularly for those towards the end of the kinematic
chain.

4.2. Part-segmentation

In Tab. 2 we present the full part-segmentation results,
expanding on the summarised results presented in the main
paper. As noted in the main paper, when training on

PGT Mix Synth
Root 49.60 54.40 27.60

Spine 1 56.20 60.80 32.60
Spine 2 71.60 72.80 40.60

L.Shoulder 61.40 65.60 32.60
L.Arm 52.60 65.00 25.80

L.Forearm 55.60 63.80 26.80
L.Wrist 58.20 59.60 20.80
L.Hand 58.80 52.20 21.40
L.Finger 54.00 50.00 20.20

R.Shoulder 63.00 68.40 31.60
R.Arm 55.20 59.00 29.40

R.Forearm 58.20 57.60 23.80
R.Wrist 53.80 56.00 22.40
R.Hand 50.40 50.40 23.80
R.Finger 49.40 51.00 24.20
Neck 1 74.40 76.20 38.40
Neck 2 74.20 76.80 36.00
Neck 3 78.00 81.80 39.00
Neck 4 80.60 84.20 40.00
Head 83.60 86.80 45.00
Nose 82.80 81.60 31.00
L.Ear 72.00 64.60 28.80

L.Ear End 54.60 51.80 20.40
R.Ear 70.80 72.60 32.20

R.Ear End 52.20 45.40 21.80
L.Leg 39.20 43.60 21.60

L.Lower Leg 42.20 43.40 17.40
L.Ankle 34.60 40.20 15.80
L.Foot 35.20 39.00 14.20
L.Toe 34.80 37.20 13.60
R.Leg 45.00 48.80 22.40

R.Lower Leg 43.60 46.20 20.00
R.Ankle 39.20 38.40 13.20
R.Foot 37.20 34.80 14.00
R.Toe 36.40 34.60 11.80

Tail Base 47.00 54.80 26.40
Tail 1 46.40 53.20 24.60
Tail 2 45.00 48.80 21.80
Tail 3 45.20 46.20 16.80
Tail 4 39.00 39.60 14.40
Tail 5 35.60 33.80 13.00
Tail 6 30.00 29.00 11.80

Tail End 27.60 30.00 11.00
Average 52.89 54.65 24.19

Table 1. Full results for our pose estimation experiments. Results
are presented as percentage of correct keypoints (PCK) as in the
main paper.



Figure 10. Examples of our PGT data: Top, RGB images with 2D
pose overlaid. Bottom, corresponding Part-segmentation map.

the Synth dataset alone, our stacked hourglass models de-
liver worse results when comparing to the Mixed and PGT
datasets. This is expected from the domain gap. Closing
this gap between training images allows for a model to more
easily adapt to real images as the difference in pose is less of
a concern. Regardless, these results still fall behind those of
our supervised learning experiments for the PGT and Mixed
datasets. Regardless of dataset there are some commonali-
ties across the results: Notably the tail, feet, hands and ears
are some of the worst performing labels though this is un-
derstandable; the tail is a very malleable body part and eas-
ily obscured while body parts such as the feet are frequently
obscured not to mention small in comparison to large parts
such as the neck and torso (which display far better results).

In Figs. 16 to 18 we display some additional results for
part-segmentation. As noted in the main paper, we are able
to achieve fairly accurate results there is still room for im-
provement. This is understandable; despite our ability to
generate canines with a variety of shapes, textures and poses

Figure 11. Examples of our Synth data: Top, RGB images with
2D pose overlaid. Bottom, corresponding Part-segmentation map.

we cannot cover all of the variety of appearance of canines
unlike what Wood et al. [11] were able to achieve with their
diverse face model. Our Synth data lacks features that are
present in real images, namely competitive stimuli such as
other animals or humans which can also make any adapta-
tion difficult. In these figures we can see that, as noted in
the main paper, our model can fix inaccuracies in the ground
truth (be they the unknown label or incorrect labels) and is
able to achieve overall accurate labels for large body parts.
However as we move towards smaller body parts, perfor-
mance worsens (as backed up by Tab. 2); as seen in the fig-
ures; smaller body parts such as the tail and paws become
harder to predict. Similarly, accurate labelling of the ears
and nose becomes more difficult as well. The former issue
is potentially a result of the small size of the paws (and sim-
ilar parts) and the large degree of flexibility of the tail. The
latter is potentially a result of the shape space of our RGBT-
Dog model, and as a results the shapes of the dogs of our
Synth data do not posses the full range of body shapes seen



Figure 12. Examples of our Synth data: Top, RGB images with
2D pose overlaid. Bottom, corresponding Part-segmentation map.

in real images. This issue could be resolved by expanding
the shape and texture PCA spaces of RGBT-Dog via addi-
tional photogrammetry scans.

4.3. Model fitting

In Fig. 19 we provide some additional examples of
the visualisations of fitting RGBT-Dog to the images of
Biggs et al. [2]. From these images, one an see that RGBT-
Dog is able to recapture the skeleton and shape of canines
with impressive, though not perfect, accuracy. One notable
failing is that RGBT-Dog is unable to recreate the tongue as
seen in rows 3 and 4 in Fig. 19.

5. Generalising to other animals
In this section we present some additional results from

applying our trained stacked hourglass network to other an-
imals. For both experiments, the stacked hourglass model
trained on Mixed data is used as it performed the best across
both tasks.

Figure 13. Examples of our Synth data: Top, RGB images with
2D pose overlaid. Bottom, corresponding Part-segmentation map.

We present some additional qualitative results for part-
segmentation in Figs. 20 and 21. Understandably, given
the wide variety of animals we are evaluating these results
vary in terms of performance. Unsurprisingly the results
for wolves, foxes and hyenas deliver the best results as they
are members of the canine family and thus there is virtually
no domain gap between the training data and these images.
We can see particularly strong results in general for animals
such as bears, deer, raccoon, pigs, horses and surprisingly
rhinoceroses. For many subjects however the trained model
while able to accurately recognise many body parts (e.g.
legs and torso) is unable to label certain species specific
features such as horns or antlers though this is expected;
our model is not trained to recognise such features.

We can also see a similar issue for species where the
body shape differs significantly from dogs. For example the
rat and hamster images in Fig. 21 show that we can find
features such as the head, neck and torso but struggle with
parts such as the limbs and tail as such points are either very



Figure 14. Predicted keypoints from hourglass trained with mixed
data on images from [2]. One can see that accurately predicting
keypoints for tail and ears is challenging.

Figure 15. Predicted keypoints from hourglass trained with mixed
data on images from [2]. One can see that accurately predicting
keypoints for tail and ears is challenging.

small or occluded by objects such as grass blades. The pres-
ence of additional stimuli such as other animals (Fig. 21) or
humans (Fig. 20) can also lead to worse performance com-
pared to when the animal is on its own as shown by the

PGT Mix Synth
Background 85.66 86.36 73.58

Torso 47.75 50.03 23.67
L.Hand 16.24 22.84 3.31
L.Wrist 11.95 12.89 3.06

L.Forearm 36.31 38.08 3.52
L.Arm 27.36 28.91 1.31
R.Hand 25.39 29.78 5.08
R.Wrist 17.03 16.71 2.46

R.Forearm 37.27 37.28 7.10
R.Arm 21.33 23.54 5.74
L.Foot 9.07 12.66 1.97

L.Ankle 26.50 21.80 1.86
L.LowerLeg 22.10 21.08 3.61

L.Leg 35.77 35.91 2.86
R.Foot 15.99 15.43 2.15

R.Ankle 24.06 15.62 3.46
R.LowerLeg 19.88 20.68 4.26

R.Leg 35.74 31.76 7.87
Tail 29.70 30.40 3.93

Neck 31.51 33.86 9.05
Head 57.50 57.06 17.20
L.Ear 23.69 28.60 2.26
R.Ear 24.66 26.73 2.91
Nose 37.77 42.95 11.23
Mean 30.01 30.87 8.48

Table 2. IOU results. Results are given in percentage terms.

Figure 16. From top to bottom: Images from [6], PGT part
segmentation maps, part-segmentation maps predicted by stacked
hourglass model trained on mixed data.



Figure 17. From top to bottom: Images from [6], PGT part
segmentation maps, part-segmentation maps predicted by stacked
hourglass model trained on mixed data.

Figure 18. From top to bottom: Images from [6], PGT part
segmentation maps, part-segmentation maps predicted by stacked
hourglass model trained on mixed data.

results for the camel images in Fig. 20.
Interestingly we can also see that our model has learned

semi-accurate labels for seals, lizards and crocodiles who
have a notable appearance domain gap from dogs. Un-
derstandably there are still some errors in these predictions
but nonetheless this does provide encouragement for future
work as no such data exists for many of these subjects. Fu-
ture work could utilise a small subset of animal specific data
using transfer learning from our data to refine for species
specific part-segmentation. As noted in the main paper all
animal images utilised for this non canine evaluation come
from the Kaggle Animal Image Dataset [1] and OpenIm-
agesV6 [7].

For pose estimation we make use of the dataset of [12]
where we employ the Euclidean distance between shared,
visible keypoints as the keypoints of [12] are only a subset
of RGBT-Dog’s. These can be found in Tab. 3 measured in
terms of pixels where we compare to the results for dogs.
The results on dogs come from our own test data where the
results were calculated on the shared RGBT-Dog/AP10K
keypoints for the sake of parity.

One thing that should be noted about our quantitative re-
sults for pose estimation is that the dataset of [12] provides
many instances of extreme closeups and obscuration. As
a result, due to our PGT and Synth data lacking such in-
stances, our model struggles to generalise to these instances.

From Tab. 3 we can see that our model generalises bet-
ter to certain animals. Interestingly we see better results for

Animal Euclidean distance Animal Euclidean distance
Antelope 9.19 King Cheetah 14.82

Argali Sheep 11.74 Leopard 18.73
Bison 11.79 Lion 13.41

Buffalo 11.00 Panther 13.12
Cow 13.76 Snow Leopard 15.61

Sheep 10.93 Tiger 16.79
Chihuahua 12.14 Giraffe 14.48

Fox 10.62 Hippo 12.50
Wolf 12.53 Chimpanzee 16.42

Beaver 16.77 Gorilla 19.27
Alouatta 14.45 Rabbit 12.48
Monkey 13.82 Skunk 14.91

Noisy Night Monkey 14.76 Mouse 13.69
Spider Monkey 16.91 Rat 15.20

Uakar 15.49 Otter 14.87
Deer 11.16 Weasel 11.54

Moose 12.70 Raccoon 12.74
Hamster 15.71 Rhino 13.07
Elephant 13.95 Marmot 13.89

Horse 11.39 Squirrel 14.05
Zebra 14.42 Pig 14.88

Bobcat 13.90 Black Bear 10.77
Cat 14.13 Brown Bear 11.64

Cheetah 14.49 Panda 16.32
Jaguar 20.95 Polar Bear 9.93

All 13.70 Dog 8.82

Table 3. Average error in Euclidean distance from our Mixed data
trained model for animals of Yu et al. [12]. Dog value is obtained
from our own test data using the same keypoints as [12].

herd/paddock animals like horses, buffaloes and deer com-
pared to animals such as beavers or rats. This is likely be-
cause knowledge regarding a dogs skeleton is more trans-
ferable due to similarity in body pose and these animals are
often seen in fields with little obscuration. The poor per-
formance for animals such as gorillas and monkeys is ex-
pected; these animals possess very different skeletal struc-
tures to dogs leading to poor generalisation. We also see
that the performance for wolves and chihuahuas is worse
then we would expect though these images contain many
close ups and occlusions which our model struggles to gen-
eralise to. Animals such as jaguars and leopards also dis-
play poor results due to such issues. A selection of these
results are visualised in Figs. 22 to 24 where we see the
effect of occlusion and different body shapes on results.



Figure 19. Left to Right: Image [6], Silhouette from [3], Keypoints from [3], Keypoints from SMALR [13], Keypoints from RGBT-Dog,
part-segmentation Map from RGBT-Dog, canine image with background masked out,canine with RGBT-Dog rendered onto it.



Figure 20. Result from applying stacked hourglass model trained
on our Mixed data to images of other animals.

Figure 21. Further results from applying stacked hourglass model
trained on our Mixed data to images of other animals.



Figure 22. From left to right: AP-10K images [12] with predicted
RGBT-Dog keypoints; predicted RGBT-Dog keypoints shared
with AP-10K; ground truth provided by [12].

Figure 23. From left to right: AP-10K images [12] with predicted
RGBT-Dog keypoints; predicted RGBT-Dog keypoints shared
with AP-10K; ground truth provided by [12].



Figure 24. From left to right: AP-10K images [12] with predicted
RGBT-Dog keypoints; predicted RGBT-Dog keypoints shared
with AP-10K; ground truth provided by [12].
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