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SUPPLEMENTARY CONTENT
In this supplementary material, we present the following:

• We present five novel datasets: Textverse10M-E,
Textverse10M-H, TST500k, CSTR2.5M and Ak-
shara550. (Section S.1).

• We present the details of multi-headed channel atten-
tion (Section S.2).

• We present the details of decoder used for downstream
tasks (Section S.3).

• We discuss the details of experimental platform (Sec-
tion S.4).

• We present additional qualitative results (Section S.6).

• We present ablation results on STR task (Section S.7).

S.1. Our Proposed Five Datasets
In this paper, we propose and release five novel datasets

that can be used for pre-training, scene text editing, and
scene text recognition tasks. Out of the five datasets, four
datasets (Textverse10M-E, Textverse10M-H, TST500K and
CSTR2.5M) are created using synthetic data generation
techniques, and one (Akshara550) contains real-world im-
ages. The datasets are diverse and contain a variety of back-
grounds, text sizes, and font styles, making them suitable
for various deep-learning tasks. Our datasets will be valu-
able resources for researchers working on scene text recog-
nition, scene text editing, and related tasks. We now de-
scribe them.

Pre-training datasets: Textverse10M-E and
Textverse10M-H: Textverse10M-E and Textverse10M-H
are designed for pre-training deep learning models for
English and Hindi scene text recognition, respectively.

We used Synthtiger [11], a synthetic data generation tool,
to generate 10 million images for each dataset. In the
English dataset (Textverse10M-E), we used 109 fonts and a
1,20,000-word vocabulary, including lowercase, uppercase,
and alphanumeric characters. Similarly, in the Hindi
dataset (Textverse10M-H), we used 53 fonts and a 67,000
word vocabulary. The images generated in these datasets
are diverse, and they contain a variety of backgrounds, text
sizes, and font styles, making them suitable for pre-training
deep learning models for scene text recognition tasks.
Figure S.1 shows sample images from this dataset.

Figure S.1. Sample images from Textverse10M-E and
Textverse10M-H datasets

Text Style Transfer 500k (TST500K): Text Style
Transfer 500k (TST500K) is a dataset designed for bi-
lingual text editing between two languages, for example,
from English to Hindi. Figure S.2 shows sample im-
ages from this dataset. This is the first dataset avail-
able for scene text editing in 5 language pairs: English-
to-Hindi, English-to-Chinese, English-to-Tamil, Hindi-to-
English and English-to-Bengali. The dataset contains
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100,000 images for each language pair, making a total of
500,000 images. To ensure the quality and diversity of the
dataset, we used an 80k-10k-10k train-validation-test split
for each language pair, resulting in a total split of 400k-
50k-50k. As shown in Figure Figure S.2, each image in the
TST500K dataset includes all the necessary information, in-
cluding the input style image, target text image, background
image, style image, and final style-transferred image. We
used an image-magic site to determine the texture and size
of the typefaces in the images, ensuring consistency and ac-
curacy in the dataset.

Figure S.2. Sample images from TST500K dataset

Complex Scene Text Recognition 2.5M (CSTR2.5M):
The Complex Scene Text Recognition 2.5M (CSTR2.5M)
dataset is designed to fine-tune and evaluate deep learning
models for scene text recognition tasks. This dataset con-
tains 2.5 million scene text images, each annotated with
SynthTiger [11]. We used 187 distinct typefaces to gen-
erate this dataset. These typefaces are quite complicated,
making it challenging for deep-learning models to recog-
nize characters accurately. This dataset has 47 characters
corresponding to 26 English alphabets, ten numerals, and
11 special characters. We split the dataset into 2 million
images for training, 250 thousand for validation, and an-
other 250 thousand for testing. This dataset is an excellent
resource for researchers working on deep learning models
for complex scene text recognition. Figure S.3 shows some
images from this dataset.

Figure S.3. Sample images from CSTR2.5M dataset

Akshara550 One of the main challenges of scene text
recognition is dealing with variations in font styles, lighting
conditions, and image distortions that can make it difficult

to recognize text accurately in natural scenes. To address
this challenge, we have developed the Akshara550 dataset, a
new dataset of real-scene text images collected from the sur-
rounding environment. The dataset contains a diverse range
of text. To create the dataset, we used a smartphone camera
to capture images of text in various settings, such as signs,
posters, and book covers. We then manually selected and
cropped text regions from the images and removed dupli-
cates or low-quality images. The resulting dataset contains
557 high-quality images, each with a corresponding ground
truth label indicating the text in the image. Our dataset pro-
vides a valuable resource for evaluating STR models, as it
contains a diverse range of text styles and sizes represen-
tative of real-world text recognition scenarios. Figure S.4
shows sample images from Akshara550.

Figure S.4. Sample images from Akshara550 dataset

Tab. S.1 summarizes the characteristics of the proposed
dataset.

S.2. Multi-headed Channel Attention (MCA)
The following content presents the mathematical oper-

ations involved in multi-headed channel attention (MCA).
Figure S.5 shows the implementation of MCA code in the
PyTorch framework.

1. Deriving learnable representations of key, query
and value: Consider three tensors with dimensions B ×
C ×H ×W , where B represents the batch size, and C, H ,



Table S.1. Characteristics of our proposed five datasets

S.No. Dataset Name Dataset type Task Number of Images Image Resolution Train-test-validation
split

1. Scene Text Pretraining Text
English (Textverse10M-E) Synthetic Pre-training 10 million 128X64, 256X128 None

2. Scene Text Pretraining Text
Devanagari (Textverse10M-H) Synthetic Pre-training 10 million 128X64, 256X128 None

3. Text Style Transfer 500k
(TST500K) Synthetic Scene Text Editing 500k 128X64, 256X128 400k-50k -50k

4. Complex Scene Text Recognition
2.5M (CSTR2.5M) Synthetic Text Recognition 2.5 million 256X128, 512X256 2M-250k-250k

5. Akshara550 Real Text Recognition 557 Variable size Only test (557)

Figure S.5. Code snippet of proposed MCA

and W denote the number of channels, height, and width
of the feature map, respectively. These three tensors are re-
ferred to as key, query, and value and are fed into the multi-
headed channel attention (MCA) block. To derive a learn-
able representation for each input tensor, the tensors are
passed through a C-Block, as shown in Figure 3(d) present
in the main paper. The output of the C-Blocks provides
learnable representations of the key, query, and value ten-
sor, each with a shape of B × C ×H ×W (line no. 14-16
in Figure S.5).

2. Determining Attention Score: For the sake of clear
exposition, we first explain the operation of a single head.
In order to determine attention scores, a similar approach to
that of conventional MSA [7] is used, starting with the mul-
tiplication of the key tensor with the query tensor. How-
ever, unlike conventional MSA, where the dot product is

calculated between the key and query tensor, in the case of
MCA, a batch-wise spatial multiplication is performed with
the help of einsum operation (line no. 26 in Figure S.5),
resulting in a tensor with a shape of B × C × C. Here, C
represents the channel-wise covariance matrices for the key
and query vectors.

3. Computing Softmax: After obtaining the resultant
matrics through the previous step, we apply the softmax
function along the last channel dimension of the vector to
generate probabilistic attention scores (line no. 27 in Fig-
ure S.5). At this stage, the shape of the vector is B×C×C.

4. Multiplying scores with values: To obtain the
weighted attention values, the output of softmax function
(which is the attention score) is multiplied by its corre-
sponding value tensor. This multiplication is performed
along the first channel dimension, resulting in a tensor with
a final shape of B×C×H×W . This multiplication process
is referred to as batch-wise channel multiplication, and it is
performed using the einsum operation (line no. 28 in Fig-
ure S.5). The channel attention mechanism implemented in
this step enables the network to focus selectively on impor-
tant channels and suppress less significant ones, ultimately
enhancing the feature representations’ quality.

Implementing MCA using multiple heads: On using
multiple heads, multiple sets of key, query, and value rep-
resentations are generated. For each head, the steps from 1
to 4 are repeated. The output of each head is concatenated
and passed to the subsequent layers of CoFormer blocks for
further processing.

S.3. Decoder design
S.3.1. Architecture of each decoder

The decoder block shown in Figure S.6 uses three
branches to process the input and apply channel and Fourier
attention. We discovered that using channel attention in
conjunction with Fourier attention enables the model to
concentrate on all the essential characteristics. Channel at-
tention helps the model to understand inter-dependencies
across channels, while Fourier attention helps it to identify



distinguishing characteristics. Together, they more effec-
tively infer finer channel-wise attention. The decoder block
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Figure S.6. Decoder block architecture

applies channel attention by calculating channel-specific at-
tention probabilities from the second branch input, which
is processed through a C-block, adaptive average pooling,
and a softmax activation. The feature maps from the first
branch are then multiplied by these attention probabilities
to weigh their values. The Fourier attention in the decoder
block is applied by processing the third branch input with
FFT and a C-block, followed by adaptive average pooling
to obtain a 1-D feature map. Later, the resultant 1-D feature
map is multiplied by the feature map from location A© in
Figure S.6. The final result is then up-sampled using trans-
posed convolution, BN, and GeLU.

S.3.2. Overall decoder block design in LISTNet

LISTNet uses two decoder blocks; the architecture of
each of these decoder blocks is only slightly different from
that explained above. The decoder block design in LISTNet
is shown in Figure S.7. Rather than using Fourier attention
in the same decoder block, this approach uses cross-Fourier
attention in the decoder. As seen in Figure S.7, the decoder
block of Stream-Bg gets the feature map from position B©
located in the Decoder block of Stream-ST. Similarly, the
decoder block in Stream-ST gets the feature map from po-
sition A© in Stream-Bg. This lets information flow from one
stream to the other. With the additional context provided by
Stream-Bg, Stream-ST is better able to produce text that is
stylistically consistent with the input style image (IIS).

Also, in stage-2, the same decoder block shown in Fig-
ure Figure S.6 is utilized with one modification; here, we
set kernel size to 1 in the transposed convolution of each
decoder block. This means there is no up-sampling of the
feature map, and the output has the exact spatial dimensions
as the input.
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Figure S.7. Decoder block in LISTNet

S.4. Implementation platform and evaluation
metrics

Implementation details of downstream tasks: In our
experiments, we used PyTorch and CUDA 11.2 to train our
models for Scene Text Recognition and Scene Text Edit-
ing. For all tasks, we initialized the learning rate at 0.0001
and used the Cosine Annealing Scheduler to decrease the
learning rate gradually. We utilized the Adam optimizer
for Scene Text Recognition. For training our Scene Text
Recognition model, we used an NVIDIA A100 GPU and
trained the model for 120,000 steps with a batch size of
256. For training our LISTNet (Scene Text Style Transfer
model) model, we used the Adam optimizer for the gen-
erator and the RMSProp optimizer for the discriminator.
We trained our model on two NVIDIA A5000 GPUs for
1,000,000 steps with a batch size of 128.

Implementation details of pre-training: Two models
were pre-trained for pre-training tasks, one for Hindi scene-
text images and the other for English scene-text images.
Both models were trained using the same approach. Each
model was trained for 1 million steps using the AdamW
optimizer with a batch size of 128. The initial learning
rate was set to 0.0001, and the Cosine Annealing sched-
uler was used to adapt the learning rate during training. To
improve the models’ performance and robustness, several
data augmentation techniques were employed, such as elas-
tic distortion, random rotation between −40 and +40 de-
grees, optical distortion, color jitter, random affine transfor-
mations, and others. These techniques were used to increase
the models’ ability to handle variations in the input data.

Evaluation metrics: For scene text editing, we use Peak
Signal to Noise Ratio (PSNR), Structural SIMilarity (SSIM)
and Learned Perceptual Image Patch Similarity (LPIPS)
metrics. For text recognition tasks, we employ the word
accuracy metric, which considers a prediction as correct if
and only if all characters in all positions match. Thirty-six
alphanumeric characters in lowercase are used for training



and inference.
Parameter count and FLOP count: Table S.2 shows

the number of parameters and FLOPs in various networks.

Table S.2. The number of parameters and FLOPs in various net-
works

Model Parameters FLOPs
VGG-16 [5] 138M 31G

Resnet-50 [2] 26M 7.7G
Resnet-152 [2] 60M 11G

Inception V3 [6] 23.5M 11.3G
ResNeXt-101 [10] 84M 14G
ConvNeXt-T [4] 29M 4.5G
ConvNeXt-S [4] 50M 8.7G

Swin-B [3] 88M 15.4G
ConvNeXt-B [4] 89M 15.4G

Swin-L [3] 197M 34.5G
ConvNeXt-L [4] 198M 34.4G

CvT-13 [9] 20M 4.53G
PVT-L [8] 61.4M 9.8G

CoFormer (ours) 48M 3.2G

S.5. Comparison of activation maps of differ-
ent model

The activation maps produced for a given input image
are shown in Figure S.8. Evidently, the previous models
struggle to distinctly discern the boundaries of the scene
text within the image, as opposed to the remaining elements
present. The lack of exact text border identification con-
siderably reduces the overall performance of these models.
The LISTNet model, on the other hand, demonstrates a re-
markable capacity to properly detect the boundaries of the
text as well as interpret the underlying structure of the scene
text. This is due to Fourier Transform and attention mecha-
nism present in CoFormer. This combination of techniques
not only enhances the LISTNet model’s capability to accu-
rately detect text boundaries but also empowers it to grasp
the nuanced structural characteristics inherent in scene text.
The Fourier Transform enriches the model’s representation
learning by capturing frequency-domain features, while the
attention mechanism refines the model’s focus on pertinent
regions, thus contributing to its performance in text-related
tasks.

S.6. Qualitative results
S.6.1. Attention maps

The attention map visualizations produced by the Co-
Former model on scene text images obtained from the in-
ternet are shown in Figure S.9. These visualizations were
derived from the fifth CoFormer block of the model and
demonstrate the model’s ability to focus on the relevant
parts of an image, which is crucial for accurate scene text
recognition.

MOSTEL TextStyleBrush

SwapTextSRNet

LISTNet (Ours)

RewriteNet

Input Image

Figure S.8. Comparison of activation maps of different model

As shown in the first row of Figure S.9, the CoFormer
model can focus on the smallest text present in the image,
indicating its ability to identify and recognize text in com-
plex scenes accurately. These attention maps provide valu-
able insights into the model’s decision-making process and
highlight its ability to attend to important regions of an im-
age selectively.

S.6.2. t-SNE results

The t-SNE visualization on the CSTR2.5M dataset is
presented in Figure S.10. Compared to the other mod-
els, our CoFormer architecture demonstrated superior per-
formance in distinguishing between the 47 characters pre-
sented in the dataset. This is evidenced by the clear separa-
tion and clustering of character representations in the t-SNE
plot. This confirms that our model can better capture and
differentiate each character’s unique features. These results
demonstrate the effectiveness of our approach in improv-
ing the discriminative power of character embeddings and
highlight the potential of CoFormer.

S.6.3. Qualitative results of text recognition

We present the text recognition results for samples from
the CSTR2.5M dataset in Figure S.11. The ABINET
and PARSeq-A models performed well on the relatively
clear, horizontal, and high-resolution input images, ac-
curately recognizing the text in these samples. In con-
trast, the CRNN model failed to recognize any charac-
ters in most images. Notably, the image with the word
’STATHAOORAPA’ presented a significant challenge to all
models due to its complex font and style. In fact, this word
is not recognized correctly by any model. Overall, our tech-
nique demonstrated robustness to text orientation variability
and the presence of different backgrounds, as evidenced by
the successful recognition of text in most of the samples
presented. These results highlight the effectiveness of our
technique for text recognition tasks and demonstrate its po-
tential as a valuable tool for real-world applications, partic-
ularly in scenarios where text may be presented in a variety



Input Image Attention Map

Figure S.9. CoFormer-generated attention maps on real-world im-
ages. The first column displays the real-world scene text images,
while the second displays the attention map. Evidently, CoFormer
has a strong comprehension ability and can pay attention to scene
text in images.

of orientations and backgrounds.

S.6.4. Qualitative results on scene text editing

Scene text editing has important implications for vari-
ous applications, including graphic design, advertising, and
multimedia production. By transforming the style of the
text in images, it can enhance the visual appeal and impact
of the content, making it more engaging and memorable.
Our results demonstrate the potential of LISTNet in these
applications by transforming the text style of various types
of style images to target images. We applied STE on three
different types of images, including random images, PPT
slides, and social media memes, in multiple languages.

STE on random images: Figure S.12 shows scene-text

Table S.3. STR ablation results.

Experiments Word Accuracy
1. Without Fourier 84.03
2. Without Fourier and without pretraining 80.98
3. Replacing MCA with MSA 83.92
4. Different model size (Default uses 13 CoFormer blocks)
4a. Four CoFormer Blocks 83.19
4b. Eight CoFormer Blocks 84.27

5. Different backbones (Default uses CoFormer)
5a. ViT 83.98
5b. Swin Transformer 84.92
5c. PVT-L 82.47
5d. CvT-13 83.29

editing applied on random images. As shown in the figure,
the model has successfully transformed the text style of the
input style image, providing a different look and feel to the
target text. The transformed text style is aligned with the
intended style, enhancing the images’ overall aesthetics.

STE on PPT slides: The Figure Figure S.13 shows the
STE applied on PPT slides. In this case, the model has
transformed the style of the text present on the slide to the
target text, making it more visually appealing and engag-
ing. The transformed text style is consistent with the slide’s
theme, which helps deliver the message more effectively.
The application of STE on PPT slides has many advantages.
It can improve the overall aesthetics of the slide and en-
hance its visual appeal, making it more engaging for the
audience. In addition, STE can be useful for creating multi-
lingual presentations. Using STE, the slides’ text style can
be transformed to match the target language, enabling the
creation of presentations in multiple languages without the
need for separate design efforts for each language. Visual
results of our model LISTNet show its usefulness in this
case.

STE on social media memes: Figure S.14 shows the
STE applied on social media memes. In this case, the model
has successfully transformed the text style of the meme,
making it more humorous and relatable. The transformed
text style matches the context of the meme, enhancing its
overall impact.

S.7. Ablation results on STR

Table S.3 shows the ablation results for STR task on ArT
(Real images) [1] dataset in auto-regressive fashion. All the
experiments are performed on pre-trained model.

(1,2) It is evident from the results that the removal of
the Fourier Transform decreased accuracy by 2.54%. Also,
the accuracy dropped by 5.89% when neither Fourier Trans-
form nor pretraining was used, showing how important
these parts are to the total performance of the model.

(3) Similar to above, the performance degrades when
MSA block is used in place of MCA.

(4) We carried out experiments with varying block
counts. Our default model uses 13 CoFormer blocks. A



CoFormerCRNN PARSeq

Figure S.10. t-SNE representation of the last layer activations of a network before applying softmax for the CSTR2.5M dataset. The classes
of these data points are shown on the right-hand side, with shades of color ranging from 0 to 25 representing the English alphabet, shades
of color ranging from 25 to 33 representing numbers, and shades of color ranging from 34 to 47 representing various special symbols.

Images

GT Weet TWINNING BIUREIDE deoxidize HADHBUIP STATHAOORAPA

CRNN weotc TuHHLUOI DlUBELDE dcoxiliZe ADHuH NNNOOOO

VITSTR-S Weet TUHHHLHU BRUREIBE deoxilize tnBBBuIK STATNSSOAOPH

TRBA weet TWHNNHMG DUKEiBE deoxldize HABNBUiP STOTOAOROPH

ABINET weet TWINHHNU BlUKBiBC deoXidize KHAHDUIP STAHOOROPH

PARSeq-A Weet TWINNHNG DIUREIDE deoxidize HADDBuIP STAHAROORAPH

CoFormer Weet TWINNING BIUREIDE deoxidize HADDBUIF STAHAROORAPH

Images

GT POLYONYN enacTmenT infringer LInsTOCK shay bewreck

CRNN PolyCNUN endomnenT infnnoer LIosIOOR 8pall heurcclc

VITSTR-S POCyOWN enacTnneT infrnoger LInSTOCR slyay berreek

TRBA POLWCWN enacTMenT infringer LInsTOCR shall buuweck

ABINET POLyCNYN enacHmenT infrmnger LNSTOCR shay beureck

PARSeq-A POLYCNYN enacTmmnT infringer LInSToCK shay beuureck

CoFormer POLYONYN enacTmenT infringer LInSTOCK shay bewrcck

Figure S.11. Comparison of SOTA models for text recognition on CSTR2.5M

model containing four CoFormer blocks, in contrast, had an
accuracy of 83.19, while eight blocks produced an accuracy
of 84.27. The accuracy of the default mode was 86.57 per-
cent. These results illustrate the importance of architectural
depth.

(5) We test the STR model with a transformer architec-
ture other than CoFormer. Based on resuts, it is clear that
CoFormer is an improvement over other transformer back-
bones.
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