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1. Supplementary Material

We provide additional implementation details, ablations
and additional visualizations in the following sections.

A. Implementation Details

In addition to the pre-processing discussed in Sec. 4,
each frame is resized to 224 x 224 and normalized before
being fed to the network. The last convolutional layer pro-
duces a 7 x 7 x 512 feature maps for each frame, which are
then stacked in chunks of 64 and forwarded to the projec-
tion head. We use 512 filters with 3 × 3 × 3 kernels for
the 3D convolution, followed by batch normalization and
Leaky ReLU activations. To maintain the input dimension-
ality on the temporal dimension, we set the padding to 1.
The spatial dimensions are collapsed with either an adap-
tive max or average pooling. After the final linear layer, the
embeddings are L2 normalized. For optimization, we use
Adam [3], with a learning rate of 10−4 and weight decay of
10−3. The triplet loss margin α is set to 0.5. When sam-
pling the video clips, the temporal stride is set to 2 for the
Industrial dataset and to 5 for the others. The experiments
were run on an Nvidia Tesla T4 GPU.

B. Additional Experiments

This section discusses the additional experiments we
performed to better understand the robustness of our
method to varying hyperparameter choices.
Embeddings dimensionality. The dimensionality of the
final output embedding can have a significant effect on
the downstream task of nearest neighbor classification. In
Tab. A we compare different dimensionalities and show that
they do not have a big influence on the results: overall our
method performs best across ranges from 128 to 256. There
seems to be a slight trade-off though: smaller embeddings
suffer less from the curse of dimensionality when perform-
ing k-NN classification w.r.t. larger embeddings, but at the
same time they have lower capacity to encode all the rele-
vant information.

Output dim. AP k-NN F1

ImageNet 46.25 46.31
64 58.13 58.55
128 61.35 63.86
256 62.25 62.14

Table A. Ablation study on the output dimensionality, for the In-
dustrial dataset.

Layers Pooling AP k-NN F1

ImageNet - 46.25 46.31
2D Conv. + FC Mean Pool 51.71 54.32
2D Conv. + FC Max Pool 56.09 57.73
3D Conv. + FC Mean Pool 56.46 56.98
3D Conv. + FC Max Pool 61.35 63.86

Table B. Effect of the projection head on the performance, for the
Industrial dataset.

Projection head. We compare different head architectures
besides the one presented in Sec. 3. In particular, we eval-
uate the contributions given by the 3D convolutional and
the spatial max pooling layers w.r.t. their 2D and average
counterparts. Tab. B reports the results. They indicate that
both, the type of pooling and convolutional layers, are im-
portant choices for maximizing performance. The 3D con-
volution helps the model to capture temporal context. The
spatial max pooling allows the model to focus on a
specific region of the input and ignore background re-
gions that have no information regarding the cycle.

L2-normalization. In the context of nearest neighbor clas-
sification, constraining the loss can help improve the quality
of the embeddings [5]. In particular, triplet loss is known to
be sensitive to the magnitude of the embeddings [4]. Thus,
we test the contribution of the L2 normalization bottleneck
in stabilizing the training, reported in Tab. C. In line with
other self-supervised frameworks [1, 2], we find that L2-
normalization leads to significantly better performance.



Data amount. While our method requires no annotation,
reducing the amount of data needed for training can greatly
reduce training time. Therefore, we also perform an abla-
tion study on the amount of data used to train the model,
reported in Tab. D. While using more data can be effective
in increasing the robustness of the learned representations,
the improvements are minimal, and even using only 10%
of the data provides significant gains w.r.t. the ImageNet
baseline.

C. Additional Visualizations

Temporal self-similarity matrix (TSM). Here, we analyze
the TSM shown in Fig. 4 of the main paper in more de-
tail. The TSM shows the similarity of each frame to all
(other) frames, thus encoding the temporal similarity pat-
terns. We visualize the TSM and the corresponding frames
for the anomalous video in Fig. A. From this, it can be seen
that our CycleCL features clearly capture the difference in
the cyclic signal when an anomaly occurs. In particular,
it detects the different types of anomalies that occur in se-
quence as distinct clusters, represented by the four lighter
blocks along the diagonal.

The first cluster depicts the start of an anomaly. At the
beginning of the second cluster, the anomaly becomes more
severe, and only one bottle is still produced. A cyclic pat-
tern is still visible in both cases, but as the anomalies are dif-
ferent, the similarity between clusters is lower. During the
third cluster, the bottle production is stopped entirely, while
the robotic arm is still moving: the similarity is therefore
very high within the cluster because most of the periodic
process is stopped.
Features projection. We apply PCA to the embeddings
produced by the CycleCL model to map them to a 1-
dimensional space, by taking the first principal component.
Fig. B shows the result of this operation for a normal and
an anomalous video clip. The PCA projection of the nor-
mal video is smooth and quasi-sinusoidal, clearly showing
the temporal cycle of the video, while the projection of the
anomalous video is discontinuous. This validates that our
methods leads to features that are sensitive to the phase of
the input.
Nearest neighbor distance. In the context of nearest
neighbor classification, we are interested in understanding

Norm. AP k-NN F1

ImageNet 46.25 46.31
L2-norm 61.35 63.86
None 57.13 56.01

Table C. Effect of l2-normalization after the projection head, for
the Industrial dataset.

Data % AP k-NN F1

ImageNet 46.25 46.31
10 59.09 59.71
50 60.27 61.93
100 61.35 63.86

Table D. Effect of the data quantity on the performance of our
method, on the Industrial dataset.

Figure A. Analysis of the repeating patterns appearing in the TSM,
extracted from an abnormal video. Three different phases can be
identified (marked in red): (i) initial small anomaly, (ii) more se-
vere anomaly, (iii) section running empty without producing any
bottles.

Figure B. 1D PCA projection of embeddings for a normal (left)
and abnormal (right) video clip. The frames depicting the anomaly
are represented in red.

Figure C. Nearest neighbor distances of abnormal frames (in red)
and normal frames (in blue) with respect to a reference video de-
picting the normal process. While the process in the query video
is running normally, correspondences with the reference can be
found with a small distance. Instead, during an anomaly the vi-
sual difference is high and the distance to the nearest neighbor is a
strong sign of abnormality.

whether the model produces clearly separable embeddings
for anomalous vs. normal frames. Fig. C shows an exam-
ple of the nearest neighbor distances of an anomalous video
w.r.t. a normal one. For each frame of the anomaly video,
the distance to the nearest frame in the normal video is com-
puted and used as its anomaly score. When a frame repre-
sents a normal state, a good match can be easily found in
the normal video. On the contrary, when a frame represents
an anomaly, the distance to the nearest neighbor is higher.
This validates that the features are sensitive to deviations
from normal repetitions.
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