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A. Supplementary results
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Figure 1. Qualitative 3D human placental cotyledon segmentations produced by AnyStar-Mix. Top: input image slices of 3D volumes,
bottom: predicted objects. As ground-truth annotations are not available, we tune NMS and probability thresholds manually for qualitative
visualization.
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Ablation Analysis (mean F1 and mean AP)
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Figure 2. A companion figure to Figure 4 of the main text reporting both mean F1 (top) and mean average precision (bottom) vs. all IoU
thresholds for our quantitative experiments, included for completeness.



A. Out-of-distribution Comparisons (mean F1 and mean AP)
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C. Blur Robustness Comparisons (mean F1 and mean AP)

B. Generalist Model Comparisons (mean F1 and mean AP)
C. elegans zebrafish mouse P. dumerilii
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Figure 3. A companion figure to Figure 4 of the main text reporting both mean F1 and mean average precision vs. all IoU thresholds for
our out-of-distribution (A), generalist model (B), and blur robustness (bottom) experiments, included for completeness.



B. Additional experimental details
B.1. Data preparation

Placenta. Given a fetal BOLD MRI time-series from a subject, we first exclude non-placental tissue from analysis us-
ing a publicly-available segmentation network [1]. We then motion-stabilize the temporal MRI sequence using the ANTs
framework [10] by jointly constructing an unbiased 3D template [2, 3] and nonrigidly and diffeomorphically registering all
temporal images to the template. Briefly, we use the local windowed NCC objective with a window size of 3 voxels, multi-
scale registration, and B-Spline regularized SyN [9] as a deformation model. Once stabilized, intensities can be sampled
within placental subregions like cotyledons and are visualized in the main paper. As only qualitative segmentations are
visualized and no supervised networks are trained, no data splitting is performed.

C. elegans. The yz plane images from [6] are cropped to a central 80 × 80 field-of-view and are resized to 64 × 64 along
that plane for consistent processing across all methods. We use the dataset provided splits.

NucMM-Z & M. These datasets are available from [5]. As NucMM-Z is already provided as annotated 64 × 64 × 64
crops, we do not preprocess it in any way. NucMM-M is downsampled by a factor of 0.6 along all axes. As test sets for the
two datasets are not publicly available, we use the provided original validation sets as test sets held-out for final evaluation.
NucMM-Z’s original training set of 27 images is further split into a new 25/2 training/validation split used for early stopping.
As NucMM-M only has four training samples, we only use the training set for all model development and prototyping prior
to final evaluation.

PlatyISH. Lastly, due to the high (isotropic) resolution and low SNR of PlatyISH [4] samples, we foreground crop
and downsample by a factor of 0.4 along all axes as this was found to benefit methods using sliding window inference
(StarDist networks and CellPose [7, 8]) and to provide adequate denoising. We use the dataset provided splits. As
PlatyISH only has two training samples, we only use the training set for all model development and prototyping prior to
final evaluation.

B.2. Other details

Baseline augmentations. Different augmentation pipelines are required to train on existing real data and obtain optimal
performance as opposed to our approach of domain randomization which seeks to synthesize all forms of imaging artifacts
and appearances from label maps. For example, real microscopy images do not typically have the MRI artifacts of bias
fields, k-space spikes, Gibbs ringing, and cutout (MRI analysis often does organ-based masking). To that end, for fully
and weakly supervised baselines trained on real microscopy images, we remove these MRI-specific transformations from
their augmentation sequence. We retain randomized foreground cropping, gamma adjustments, blurring, histogram shifting,
axis flips, 90-degree rotations, multi-distribution noise injection, and affine & elastic deformations as real microscopy image
augmentations.
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