Appendices In this supplementary material, we conduct a
series of studies on the proposed models as follows.

1. More ablation study

Study on face-aware retrieval system We evaluate the
model performances with/without the face-aware retrieval
system as shown in Table 1. As we can see, the face-
aware retrieval improves the model performances on all
three tasks.

Table 1. Study on face-aware retrieval system.

Model CelebA | RAF-DB | 300W
w/o 91.42 89.34 3.35
w/ (ours) | 91.58 89.83 332

ProS-1M-real

The different number of prototypes, architecture and
training time: We compare the performances of the pro-
posed ProS-1M-syn model on the different numbers of pro-
totypes, architecture, and training epochs. The results are
shown in Table 2. As we can observe, the performances are
improved with the increasing number of prototypes from
1!, 512,1024 and start degrading at 2048. Therefore, we
set the default number of prototypes as 1024. In addition,
we evaluate the model with a longer training time (100 vs
20 epochs) and a larger model ViT-B/16 (85M vs 21M). We
can observe the longer training iterations and a larger model
size do slightly improve the model performances.

Table 2. Ablation study of different number of prototypes, training
epochs and model architecture on ProS-1M-syn, which is trained
on 1024 prototypes, 20 epochs and ViT-S/16.

CelebA | RAF-DB | 300W
1 90.45 86.48 3.71
# of prototypes 512 91.46 88.46 3.38
1024 (ours) 91.57 89.06 3.36
2,048 91.53 88.85 3.38
epochs 20 (ours) 91.57 89.06 3.36
100 91.59 89.44 3.35
architectures ViT-5/16 (ours) | 91.57 89.06 3.36
ViT-B/16 91.52 89.53 3.35

Data size: We study how the data size of face images could
influence the final performance. In particular, we study the
training data size of 0.2M, 0.5M, 1M, and 8M on real im-
ages. We report the results in Table 3. As we can observe,
the more training images we use, the better performance.

2. Models comparison

The differences between the proposed method and ex-
isting ones [2, 3] are shown in Table 4. Compared with
DINO, we add the prototypes and use the Sinkhorn regu-
larization [4]. Compared with SWAV, we explore the mo-
mentum encoder and vision transformer architecture.

1

we use the loss in Dino [3]

Table 3. Study on data size.

Size CelebA | 300W | RAF-DB
0.2M 91.45 3.57 81.75
0.5M 91.53 3.48 85.91
IM 91.58 3.32 89.83
8.6M (full) | 91.88 3.27 91.04

Table 4. Comparison between proposed ProS, DINO [3] and
SwWAV [2]

Methods | Momentum | Prototype | Operation (teacher) Architecture Dataset
SwWAV [2] v Sinkhorn [4] ResNet ImageNet
DINO [3] v Centering Vision Transformer | ImageNet
ProS(ours) v v Sinkhorn [4] Vision Transformer MSIM

2.1. Pre-training models on face dataset

We re-implement the pre-training methods such as
DINO [3], MAE [5], and MSN [1] models on the synthetic
1M images and evaluate the downstream tasks as shown in
Table 5. For a fair comparison, we use the ViT-S/16 archi-
tecture for these methods and linearly scale the learning rate
based on the data size. As we can observe, ProS still out-
performs the other baselines, especially on the expression
estimation task at RAF-DB dataset. This indicates the su-
periority of the proposed method compared with the other
baselines when trained with the same face dataset.

Table 5. Experimental comparison with DINO [3], MAE [5], and
MSN [ 1] methods on facial datasets

Methods CelebA | RAF-DB | 300W
DINO [23] 91.45 87.48 341
MAE [5] 91.28 87.73 3.38
MSN [1] 91.43 88.19 3.38
ProS-1M-syn (ours) | 91.57 89.06 3.36

3. Linear probe

We analyze the feature learned from ProS-1M-syn model
by fine-tuning with frozen vision-transformer backbone and
the study results are shown in Table 6. As we can observe,
the linear probe results from synthetic data are better on
face attribute estimation. While, the model from real im-
ages achieves better performance on expression classifica-
tion and face alignment.

Experiments on face parsing As shown in Table 7, ProS
fails to achieve excellent results on the face parsing on
LaPa dataset. One reason could be that the learned features
mostly cover the facial region but not the hair region, which
can also be observed in the parsing result in the “Hair” class.



Table 6. Study on linear probe with frozen ViT-S/16 backbone.

Dataset CelebA LFWA

Portion 0.2% | 0.5% 1% 2% 100% 5% 10% | 20% | 50% | 100%
# of training data | 325 843 | 1,627 | 3,255 | 162,770 | 313 626 | 1,252 | 3,131 | 6,263
ProS-1M-syn;, [ 87.42 | 88.64 | 89.17 | 89.67 | 90.23 | 82.55 | 83.26 | 83.98 | 84.76 | 85.14
[ ProS-1M-real;, | 87.30 [ 88.24 | 83.80 [ 89.31 | 90.62 | 81.02 [ 82.13 | 83.02 | 84.08 | 84.72 |
AffectNet8 RAF-DB
Methods Full | 10% | 2% | Full [ 10% | 2% | 1%

[ ProS-Im-syn,, | 42.06 | 38.48 | 33.78 | 80.04 | 73.40 | 64.86 | 56.23 |
[ ProS-Tm-realy, | 43.01 | 40.56 | 37.56 | 75.46 | 69.20 | 60.07 | 55.64 |

WFLW 300W
Methods 0.7% | 5% | 10% | 20% | 100% 1.5% 10% 100%
ProS-1M-syn;, [ 10.73 | 8.00 | 7.39 | 6.94 | 6.12 | 5.56 11.12 6.64 | 432 8.33 5.12 | 3.66 6.72 4.26
ProS-1M-real;, | 9.47 | 7.25 | 6.76 | 6.35 | 5.68 | 5.31 10.44 6.32 | 4.17 7.90 4.90 | 3.58 6.39 4.13

Table 7. Comparison with SOTA methods on LaPa [6] dataset.

Subset Skin | Hair | L-E R-E U-L I-M L-L | Nose | L-B R-B_ | Mean
FaRL [8] 97.52 | 95.11 | 92.33 | 92.09 | 88.69 | 90.70 | 90.05 | 97.55 | 91.57 | 91.34 | 92.70
AGRNet [7] 97.7 96.5 91.6 91.1 88.5 90.7 90.1 97.3 89.9 90.0 92.3

ProS-1M-syn | 96.95 | 93.20 | 91.09 | 90.86 | 87.58 | 89.47 | 89.26 | 97.45 | 90.47 | 89.60 | 91.60
ProS-1M-real | 97.05 | 93.55 | 91.02 | 91.20 | 88.01 | 89.73 | 89.26 | 97.40 | 90.34 | 89.95 | 91.70
ProS-full-real | 97.13 | 93.57 | 91.42 | 91.32 | 88.27 | 90.10 | 89.51 | 97.52 | 90.88 | 90.27 | 92.00
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