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1. Datasets used for Evaluations
Tab. 1 summarises the datasets we use for evaluations.

Note that we downsize the images from KITTI-CARLA by
a factor of two, and crop pixels at the bottom to exclude the
ego-vehicle’s bonnet from the view. The final image size is
492 × 696. For the other two datasets the original image
sizes are kept.

2. Implementation Details
As was mentioned in our paper, our method can poten-

tially be plugged into any visual SLAM/odometry system
as an add-on module. Below we use the well-known stereo
ORB-SLAM2 [13] as an example to detail our method.

2.1. Extracting a Local Map

This is the first step of our method. A local map is ex-
tracted around the ORB-SLAM2’s current key frame after
its Local BA, at which stage the key frame (KF) poses and
the map point (MP) positions are relatively accurate. Given
the current key frame (denoted as KFc.), we first identify
its local key frames (denoted as a set LKFc), then find its
local map points (denoted as a set LMPc). LKFc basically
consists of all key frames that are covisible1 to KFc. LMPc

basically contains all map points that can be observed by at
least one key frame in LKFc.

The pseudo code of this step is shown in Algorithm 1.

2.2. Generating Distance-Intensity Pairs

This is the second step of our method. We use dmn to de-
note the Euclidean distance between KFm and MPn, which
can be calculated given the pose of KFm and the position
of MPn. We use Imn to denote the pixel intensity at MPn’s
corresponding 2D feature point in KFm. A bilinear interpo-
lation is performed in case of a non-integer pixel location.

The pseudo code of this step is shown in Algorithm 2.

1Two frames are called covisible if there exists at least one map point
that is visible to both of them.

2.3. Setting the Intensity Bounds

Algorithm 3 details how we set lower and upper bounds
on A and relevant J’s for our optimisation.

3. Experiments on the Intensity
As was mentioned in the previous section, when gener-

ating the distance-intensity pairs, we use the intensity at a
MP’s corresponding 2D feature point in the image. From
now on we call this intensity the raw intensity. We have
also experimented with the use of the following two inten-
sities.

1. The projected intensity - This is the intensity value at
the pixel location where the MP projects onto the im-
age plane of the camera. A bilinear interpolation is
performed in case of a non-integer pixel location.

2. The refined intensity - This is the intensity value ob-
tained after aligning a local image patch around the
feature point, which will be explained in detail below.

3.1. The Refined Intensity

First, out of all KFs that can observe an MP, we choose
the KF that has the median distance to it as the reference
KF. Then, we consider an image patch around the MP’s
corresponding feature point in the reference KF to be the
reference patch. Next, we reproject the reference patch and
then project it onto every query KF, which is basically ev-
ery KF other than the reference KF that can observe the
same MP. Finally, for every query KF we seek a pair of im-
age coordinates which best aligns (i.e. minimises the sum of
squared differences) its surrounding patch to the projected
reference patch by applying the inverse compositional algo-
rithm [1, Fig. 4], which is iterative and we use the corre-
sponding 2D feature point location in the query KF to ini-
tialise. Additionally, we normalise each image patch (i.e.
subtract its mean then divide by its standard deviation) be-
fore performing the alignment in order to mitigate the effect
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Dataset Source clear images
Image size
(H ×W) A (in the range [0, 255]) Vmet in meters

Total # of
sequences

VKITTI2 [4]
‘overcast’,
all five scenes 375× 1242 0.7 (178.5)

{30, 40, 50, 60, 70, 80}

5× 6 = 30

KITTI-CARLA [6] all seven towns 492× 696 0.8 (204) 7× 6 = 42

DRIVING [12]
‘finalpass’,
15mm focal length, ‘slow’,
‘backwards’ and ‘forwards’ scenes

540× 960 0.9 (229.5) 2× 6 = 12

Table 1. Datasets used for evaluation

Algorithm 1: Extracting a local map
Input: KFc
Output: LMPc

1 LMPc ← ∅ ; // initialise LMPc as an empty set
2 find LKFc ; // find the set of all KFs that are covisible to KFc
3 foreach KFm ∈ LKFc do // loop through all KFs in LKFc
4 foreach ⟨m,n⟩ ∈ Mm do // loop through all MPs that can be observed by KFm
5 if MPn /∈ LMPc then // if MPn has not been added to LMPc

6 LMPc ← LMPc ∪ {MPn} ; // add MPn to LMPc

of reduced local contrast caused by fog. We compute the in-
tensity at the optimised image coordinates as the refined in-
tensity. Again, a bilinear interpolation is performed in case
of a non-integer pixel location.

Our image patch alignment operation is inspired by the
feature alignment step in SVO [8, Sec. IV-B], in which
they consider it as a relaxation step that violates the epipo-
lar constraints in order to achieve a higher correlation be-
tween the feature patches. In contrast, our intention here is
to refine the intensity data in order to robustify the subse-
quent fog parameter estimation at the cost of a slight devi-
ation from the best KF poses and MP positions found by
the local BA. Note that this step is for the sole purpose of
refining the intensity data, and does not have to modify the
KF poses or the MP positions in the underpinning visual
SLAM/odometry system.

3.2. Results

Tab. 2 shows the quantitative results of our intensity ex-
periment evaluated on DRIVING.

We observe: a) Using the projected intensity, the results
are not as good as using the raw intensity. This is likely
to be caused by errors in the KF poses and MP positions.
Bear in mind that the input images are foggy and therefore
ORB-SLAM2’s performance can be severely compromised;
b) Using the refined intensity gives a comparable perfor-
mance to using the raw intensity in estimating β, but gives
the worst performance in estimating A. A plausible expla-
nation is that the image patch alignment does not work well
when trying to align two patches that are of quite differ-
ent local contrasts (because the image local contrast gets
degraded asynchronously by fog depending on the distance
between the scene point and the camera).

We also notice that because the inverse compositional
algorithm is iterative, when the local map is of a large scale,
generating the refined intensity of each observation would
add a considerable amount of computational time.

In conclusion, we choose the raw intensity as our default
setting and report its results in the paper.

4. More Qualitative Results
4.1. A and β Estimates vs. Frames

In Fig. 1 we present how β and A estimates vary with
frames at various visibilities on the scene ‘backwards’ in
DRIVING.

4.2. Using A and β Estimated by Our Method

To further demonstrate how the fog parameters estimated
by our method can be used for downstream image defog-
ging and depth estimation tasks, in Fig. 2 we present more
qualitative results after feeding the fog parameters esti-
mated by the proposed method to our previous work [7].

5. The Need of a New Dataset
In Tab. 3 we list a number of popular, real datasets that

are publicly available for researchers in the autonomous
driving and computer vision communities to use.

We make the following observations.

• Most datasets do not contain images recorded in foggy
weather.

• Out of the few datasets which contain foggy images,
only RADIATE and DrivingStereo contain consecu-
tive, left and right frames. Consecutive frames are



Algorithm 2: Generating distance-intensity pairs
Input: LMPc

Output: DI
1 DI← ∅ ; // initialise DI as an empty set
2 foreach MPn ∈ LMPc do // loop through all MPs in LMPc

3 if |Mn| < 4 then // if MPn is observed by too few KFs
4 continue;

5 DIn ← ∅ ; // initialise DIn as an empty set
6 foreach ⟨m,n⟩ ∈ Mn do // loop through all KFs that can observe MPn
7 DIn ← DIn ∪ (dmn , Imn ) ; // add the distance-intensity pair to DIn

8 DI← DI ∪ DIn ; // add DIn to DI

Algorithm 3: Setting the bounds on A and relevant J’s
Input: DI
Output: lA, uA, {lJn , uJn | DIn ∈ DI}

1 LBA ← ∅ ; // initialise the candidate sets of A’s lower bounds as an empty set
2 foreach DIn ∈ DI do // loop through all distance-intensity pairs

3 kn ← (Idmax
n − I

dmin
n )/ (dmax − dmin) ; // compute the slope of the line

4 if kn > 2 then // if Jn is smaller than A
5 lJn ← 0 ;

6 uJn ← I
dmin
n ;

7 LBA ← LBA ∪ Idmax
n ;

8 else if kn < −2 then // else if Jn is greater than A

9 lJn ← I
dmin
n ;

10 uJn ← 255 ;

11 else // undetermined whether Jn is smaller or greater than A, set loose bounds
12 lJn ← 0 ;
13 uJn ← 255 ;

14 if LBA ̸= ∅ then // if LBA is not empty
15 lA ← median (LBA) ;

16 else // if LBA is empty
17 lA ← 0 ;

18 uA ← 255 ;

Intensity mode β A
RMSE (%) MAE (%) SD (%) RMSE (%) MAE (%) SD (%)

Raw (i.e. Ours in the paper) 0.0060 (10.66) 0.0044 (7.69) 0.0043 (7.74) 2.3435 (1.02) 1.6025 (0.70) 2.0229 (0.88)
Projected 0.0066 (11.65) 0.0052 (9.07) 0.0044 (7.84) 2.3697 (1.03) 1.6453 (0.72) 2.1615 (0.94)
Refined 0.0062 (10.00) 0.0044 (7.11) 0.0059 (9.60) 3.3864 (1.48) 2.5242 (1.10) 3.1021 (1.35)

Table 2. Averaged β and A error metrics on DRIVING comparing different intensity modes

required to maximise the performance of a visual
SLAM/odometry system. Meanwhile, stereo images
with a known baseline are required in estimating β be-
cause the distance d needs to be recovered to an abso-
lute scale (cf . Eq. (2) in our paper).

• Only one out of the four foggy sequences in RADIATE
was recorded while the ego-vehicle was on the move.
Unfortunately, in that sequence there is consistently a
considerable amount of water residual on the camera
casing, which significantly blocks the view (see the left
of Fig. 3).

• All four sequences that are labelled ‘foggy’ in Driv-
ingStereo are, however, not really foggy - the visibility
is still very good (see the right of Fig. 3).

• Neither RADIATE nor DrivingStereo contains any
counterpart sequence of a foggy one but taken in clear
weather of the same route. Such data is essential if one
wants to quantitatively evaluate the downstream depth
estimation or image defogging performance.

We make a final remark that none of the listed datasets
comes with information about its camera’s photometric cal-
ibration. The atmospheric scattering model is actually de-
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Figure 1. β and A estimates vs. frame evaluated on the scene ‘backwards’ in DRIVING at various visibilities (left to right: 30, 50 and 70
m).

Dataset Stereo images Consecutive frames Foggy images Counterpart clear images

KITTI Odometry [9] ✓ ✓ ✗ N/A
Oxford (Radar) RobotCar [2, 10] ✓ ✓ ✗ N/A
nuScenes [5] ✓ ✓ ✗ N/A
Waymo [16] ✓ ✓ ✗ N/A
ONCE [11] ✓ ✓ ✗ N/A

Seeing Through Fog [3] ✓ ✗ (only the left consecutive frames are published) ✓ ✗

BDD100K [18] ✗ (monocular) ✓ ✓ ✗

RADIATE [15] ✓ ✓ ✓ ✗

DrivingStereo [17] ✓ ✓ ✓ ✗

Table 3. Comparison of some popular datasets for autonomous driving applications

rived in the context of radiometry [14]. When a camera cap-
tures an image of a scene and saves an object’s radiance as
a pixel intensity value, there exist a few stages in its sensing
pipeline that inevitably introduce non-linear mappings. The
most prominent stage is called gamma correction. As a re-
sult, ideally the saved images need to be gamma-undone be-
fore the atmospheric scattering model can be applied. This
inverse mapping process would require the camera to be
photometrically calibrated.

To conclude, to the best of our knowledge, none of the
existing real datasets is suitable for us to use for evaluation.
We therefore resort to synthetic foggy images. Collecting a
dataset which addresses all aforementioned issues is a pri-
ority.
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Figure 2. More qualitative results produced by our previous work [7] after feeding the A and β values estimated by the proposed method
to it. Columns from left to right: VKITTI2 (Vmet = 40 m), KITTI-CARLA (Vmet = 60 m) and DRIVING (Vmet = 80 m). Rows from top
to bottom: the input foggy images, the defogged images and the disparity maps.

Figure 3. Sample foggy images from RADIATE (left) and DrivingStereo (right)
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